COMPLEX ANALYSIS – PRACTICE PROBLEMS

1. Problem

(a) Prove that if $f \in \mathcal{H}(\Omega)$, then $g(z) := \overline{f(\frac{1}{\overline{z}})}$ is holomorphic in $\overline{\Omega} = \{z \in \mathbb{C} \mid \overline{z} \in \Omega\}$. In particular,

$$g'(z) = f'(\bar{z}) \,.$$

(b) What is the general form of a rational function $R = \frac{P}{Q}$ (where P, Q are polynomials) which has absolute value 1 on the unit circle |z| = 1? In particular, how are the zeros and poles related to each other ? Hint: Consider $h(z) := R(z)\overline{R(\frac{1}{z})}$.

2. Problem

Assume that $f \in \mathcal{H}(\Omega)$, and let γ be a closed contour in Ω . Prove that $\oint_{\gamma} \overline{f(z)} f'(z) dz$ is purely imaginary.

3. Problem

Assume $P(z) = z^n + a_{n-1}z^{n-1} + \dots + a_0$ is a polynomial of degree n > 0. Assume that $|P(z)| \le 1$ for |z| = 1. Prove that then, $P(z) = z^n$.