COMPLEX ANALYSIS - PRACTICE PROBLEMS

1. Problem
(a) Prove that if $f \in \mathcal{H}(\Omega)$, then $g(z):=\overline{f\left(\frac{1}{\bar{z}}\right)}$ is holomorphic in $\bar{\Omega}=\{z \in \mathbb{C} \mid \bar{z} \in \Omega\}$. In particular,

$$
g^{\prime}(z)=\overline{f^{\prime}(\bar{z})} .
$$

(b) What is the general form of a rational function $R=\frac{P}{Q}$ (where P, Q are polynomials) which has absolute value 1 on the unit circle $|z|=1$? In particular, how are the zeros and poles related to each other ?
Hint: Consider $h(z):=R(z) \overline{R\left(\frac{1}{\bar{z}}\right)}$.

2. Problem

Assume that $f \in \mathcal{H}(\Omega)$, and let γ be a closed contour in Ω. Prove that $\oint_{\gamma} \overline{f(z)} f^{\prime}(z) d z$ is purely imaginary.

3. Problem

Assume $P(z)=z^{n}+a_{n-1} z^{n-1}+\cdots+a_{0}$ is a polynomial of degree $n>0$. Assume that $|P(z)| \leq 1$ for $|z|=1$. Prove that then, $P(z)=z^{n}$.

