PDE I - HOMEWORK ASSIGNMENT 1

Due Friday, September 3, 2010

Please write clearly, and staple your work!

1. Problem

Assume that $u: B_{2 r} \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ satisfies $u \Delta u \geq 0$. Moreover, let $\phi: B_{2 r} \rightarrow \mathbb{R}$ be non-negative, with $\phi=0$ on $\partial B_{2 r}$. Prove that then,

$$
\int_{B_{2 r}} \phi^{2}|\nabla u|^{2} d x \leq 4 \int_{B_{2 r}}|u|^{2}|\nabla \phi|^{2} .
$$

Hint: Start by applying the divergence theorem to $\int_{\partial B_{2 r}} \phi^{2} u \nabla u \cdot \nu d \sigma=0$ (why does this hold ?).

2. Problem

As above, assume that $u: B_{2 r} \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ satisfies $u \Delta u \geq 0$. Prove the Cacciopolli inequality

$$
\int_{B_{r}}|\nabla u|^{2} d x \leq \frac{4}{r^{2}} \int_{B_{2 r} \backslash B_{r}} u^{2} d x
$$

Hint: Use Problem 1, with the choice $\phi(x)=1$ if $|x| \leq r$, and $\phi(x)=\frac{2 r-|x|}{r}$ if $r<x \leq 2 r$.

3. Problem

Let $u: B_{r} \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a C^{1} function with $u=0$ on ∂B_{r}. Prove that then,

$$
\int_{B_{r}} u^{2} d x \leq c(n) r^{2} \int_{B_{r}}|\nabla u|^{2}
$$

This is the Dirichlet-Poincaré inequality.

4. Problem

Prove that there exists a constant $C(n)$ such that for all harmonic functions $u: B_{2 r} \subset$ $\mathbb{R}^{n} \rightarrow \mathbb{R}$, one has

$$
\int_{B_{2 r}} u^{2} d x \geq(1+C(n)) \int_{B_{r}} u^{2} d x
$$

Note that this estimate bounds the rate at which a harmonic function can decay.
Hint: You may want to proceed as follows:

- First, use the Cauchy-Schwarz inequality and problem 2 to prove that

$$
\int_{B_{2 r}}|\nabla(\phi u)|^{2} d x \leq 10 \int_{B_{2 r}} u^{2}|\nabla \phi|^{2}
$$

- Next, apply the Dirichlet-Poincaré inequality to the left hand side of this inequality, and choose ϕ as in problem 2.

