PDE I - HOMEWORK ASSIGNMENT 3

Due Monday, September 20, 2010. Please write clearly, and staple your work!

1. Problem

Consider the wave equation $u_{t t}-\Delta u=0$ on $\mathbb{R}^{n} \times \mathbb{R}_{+}$, with initial data $u=g, u_{t}=h$ on $\mathbb{R}^{n} \times\{0\}$, where $g \in C^{m}\left(\mathbb{R}^{n}\right)$ and $h \in C^{m-1}\left(\mathbb{R}^{n}\right)$, for $m=\frac{n+1}{2}$ if n is odd, and $m=\frac{n+2}{2}$ if n is even.
(a) Solve it for dimension $n=5$, using the method of spherical means.
(b) Solve it for dimension $n=4$, using the method of descent.
(c) Show that $u \in C^{2}\left(\mathbb{R}^{n} \times \mathbb{R}_{+}\right)$.

2. Problem

Consider the same homogenous wave equation as above, but in dimension $n=3$. Moreover, assume now that g and h are smooth and have compact supports. Prove that there exists a constant C such that $|u(x, t)| \leq C / t$, for every $x \in \mathbb{R}^{3}$, and for $t>0$.

3. Problem

Assume that $u \in C^{2}\left(\mathbb{R} \times \mathbb{R}_{+}\right)$solves the homogenous wave equation in dimension $n=1$, with initial data $u=g, u_{t}=h$ at $t=0$, where both g and h are smooth with compact supports. Define the kinetic energy

$$
K(t):=\frac{1}{2} \int_{\mathbb{R}} u_{t}^{2}(x, t) d x
$$

and the potential energy

$$
P(t):=\frac{1}{2} \int_{\mathbb{R}} u_{x}^{2}(x, t) d x
$$

Prove that:
(a) $K(t)+P(t)$ is constant in time t.
(b) $K(t)=P(t)$ for all sufficiently large times t (equipartition of energy).

