PDE I - HOMEWORK ASSIGNMENT 4

Due Monday, September 27, 2010. Please write clearly, and staple your work !

1. Problem

Let $U \subset \mathbb{R}^{n}$ be an open subset. Find the characteristic ODE of the Hamilton-Jacobi equation,

$$
u_{t}+H\left(D_{x} u, x, t\right)=0
$$

for $u \in C^{2}\left(U \times \mathbb{R}_{+}\right)$as a function of $(x, t) \in U \times \mathbb{R}_{+}$, with H being C^{2} in all its arguments. Show that it has the form

$$
x_{t}(t)=D_{p} H(p, x, t) \quad, \quad u_{t}(t)=\left(p \cdot D_{p} H-H\right)(p, x, t) \quad, \quad p_{t}(t)=-\left(D_{x} H\right)(p, x, t),
$$

where $u(t)=u(x(t), t)$, and $p(t)=D_{x} u(x(t), t)$.
Hint: You might want to consider $y:=(x, t)$ and $D_{y} u$, to bring the above equation into the form $F\left(D_{y} u, y\right)=0$ which has been discussed in class. Show that the characteristic curve $y(s)$ is such that in fact, $t(s)=s$ (which is why the above characteristic ODE is parametrized by t, not s).

2. Problem

Consider the Hamilton-Jacobi equation

$$
u_{t}+\frac{1}{2}\left(D_{x} u\right)^{2}-x=0
$$

for $x \in \mathbb{R}$ and $t \in \mathbb{R}_{+}$, with

$$
u(x, 0)=x
$$

Determine the initial conditions for the characteristic ODE, and solve the characteristic ODE. Subsequently, find the solution $u(x, t)$.

Hint: Again, consider $y:=(x, t), D_{y} u$, and $F\left(D_{y} u, y\right)=0$. Then, the initial condition at $t=0$ becomes a boundary condition for $y \in \mathbb{R} \times \mathbb{R}_{+}$. Determine the initial conditions for the characteristic ODE as discussed in class.

