PDE I - HOMEWORK ASSIGNMENT 5

Due Monday, October 4, 2010. Please write clearly, and staple your work !

1. Problem

Show that

$$
u(x, t)=\left\{\begin{aligned}
-\frac{2}{3}\left(t+\sqrt{3 x+t^{2}}\right) & \text { if } 4 x+t^{2}>0 \\
0 & \text { if } 4 x+t^{2}<0
\end{aligned}\right.
$$

is an entropy solution of

$$
\begin{aligned}
u_{t}+\left(\frac{u^{2}}{2}\right)_{x}=0 & \text { in } \mathbb{R} \times \mathbb{R}_{+} \\
u=g & \text { in } \mathbb{R} \times\{t=0\},
\end{aligned}
$$

where $g(x)=0$ if $x \leq 0$, and $g(x)=-\frac{2}{3} \sqrt{3 x}$ if $x>0$.

2. Problem

Assume that $u(x+z)-u(x) \leq E z$ for all $z>0$. Let $u^{\epsilon}:=\eta_{\epsilon} * u$, where η_{ϵ} is a standard mollifier (satisfying $\int_{\mathbb{R}} \eta_{\epsilon}(y) d y=1$), and show that

$$
u_{x}^{\epsilon} \leq E .
$$

3. Problem

Compute explicitly the unique entropy solution of

$$
\begin{aligned}
& u_{t}+\left(\frac{u^{2}}{2}\right)_{x}=0 \\
& \text { in } \mathbb{R} \times \mathbb{R}_{+} \\
& u=g \\
& \text { in } \mathbb{R} \times\{t=0\}
\end{aligned}
$$

with

$$
g(x)= \begin{cases}1 & \text { if } x<-1 \\ 0 & \text { if }-1<x<0 \\ 2 & \text { if } 0<x<1 \\ 0 & \text { if } x>1\end{cases}
$$

Draw a picture to illustrate the solution at $t>0$.

