PDE I – HOMEWORK ASSIGNMENT 8

Due Monday, November 1, 2010. Please write clearly, and staple your work !

1. Problem

Let $k_{ij}(x) := \frac{x_i x_j}{|x|^{n+2}}$, for $i, j \in \{1, \dots, n\}$, and $i \neq j$. Prove that $T_{ij}f(x) = \int k_{ij}(x-y)f(y)dy$

$$T_{ij}f(x) = \int k_{ij}(x-y)f(y)dy$$

is a Calderon-Zygmund operator.

2. Problem

For which values of q = q(p, r) can the inequality

$$||k * f||_q \le C ||k||_r ||f||_p$$

possibly be satisfied for all $k \in L^r(\mathbb{R}^n)$ and $f \in L^p(\mathbb{R}^n)$ with $1 \le p, r \le \infty$? Determine q = q(p, r) and prove the inequality.

3. Problem

Let s > 0. Define the Sobolev space $H^s = \{f \in L^2(\mathbb{R}^n) \mid ||f||_{H^s} < \infty\}$ where

$$\|f\|_{H^s}^2 = \int_{\mathbb{R}^n} (1+|\xi|^2)^s |\widehat{f}(\xi)|^2 d\xi$$

Prove that for $s > \frac{n}{2}$, $H^s(\mathbb{R}^n)$ embeds in the space of bounded continuous functions. That is, $\|f\|_{C^0(\mathbb{R}^n)} \leq C \|f\|_{H^s}$.