PDE I – HOMEWORK ASSIGNMENT 9

Due Monday, November 8, 2010. Please write clearly, and staple your work !

1. Problem

Consider the Besov space $H^{s,q}$ which is the closure of $C_0^{\infty}(\mathbb{R}^n)$ relative to the norm

$$||f||_{H^{s,q}} := \left(\sum_{k \in \mathbb{Z}} (1+2^k)^{sq} ||P_k f||_{L^2(\mathbb{R}^n)}^q\right)^{\frac{1}{q}},$$

for $1 \leq q < \infty$. Prove that $H^{s,1} \subset H^s$, and that $H^s = H^{s,2}$. Moreover, prove that $\|f\|_{L^{\infty}(\mathbb{R}^n)} \leq C \|f\|_{H^{n/2,1}}$.

Hint: For the last part, use the Bernstein inequality in Paley-Littlewood theory.

2. Problem

Let $\underline{Sf} := (P_k f)_{k \in \mathbb{Z}}$ where $f = \sum_{k \in \mathbb{Z}} P_k f$ is the Paley-Littlewood decomposition of f, and let

$$Sf(x) = \|\underline{Sf}(x)\|_{\ell^{2}(\mathbb{Z})} = \Big(\sum_{k \in \mathbb{Z}} |P_{k}f(x)|^{2}\Big)^{\frac{1}{2}}$$

denote the Hardy-Littlewood square function.

(a) Prove that

 $\|Sf\|_p \approx \|f\|_p$

does not hold if p = 1 or $p = \infty$, but that S is a bounded map from L^1 to weak- L^1 .

(b) Assume that instead of using smooth Fourier multipliers, P_k were defined via sharp multipliers, $\widehat{P_k f}(\xi) = \chi_{[2^k, 2^{k+1})}(\xi)\widehat{f}(\xi)$. Explain why the proof given in class of $\|Sf\|_p \approx \|f\|_p$ for $1 , and <math>f \in \mathcal{S}(\mathbb{R}^n)$, holds only for p = 2, but fails if $p \neq 2$.