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Overview

This talk presents a recent result in quantum chaos
Central ingredient: fractal uncertainty principle (FUP)

No function can be localized
in both position and frequency

near a fractal set

Using tools from
Microlocal analysis ( classical/quantum correspondence )
Hyperbolic dynamics ( classical chaos )
Fractal geometry
Harmonic analysis
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Results

Control of eigenfunctions

(M, g) negatively curved surface
Geodesic flow ϕt : T ∗M → T ∗M is a
standard model of classical chaos
Eigenfunctions of the Laplacian −∆g

studied by quantum chaos

M

(−∆g − λ2)u = 0, ‖u‖L2 = 1

Theorem 1
Let Ω ⊂ M be an arbitrary nonempty open set. Then

‖u‖L2(Ω) ≥ c > 0
where c depends on M,Ω but not on λ

Constant curvature: D–Jin ’18, using D–Zahl ’16 and Bourgain–D ’18
Variable curvature: D–Jin–Nonnenmacher ’19, using Bourgain–D ’18
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Geodesic flow ϕt : T ∗M → T ∗M is a
standard model of classical chaos
Eigenfunctions of the Laplacian −∆g

studied by quantum chaos

M

Ω

(−∆g − λ2)u = 0, ‖u‖L2 = 1

Theorem 1
Let Ω ⊂ M be an arbitrary nonempty open set. Then

‖u‖L2(Ω) ≥ c > 0
where c depends on M,Ω but not on λ

For bounded λ the estimate follows from unique continuation principle
The new result is in the high frequency limit λ→∞
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Results

An illustration

Picture on the right courtesy of Alex Strohmaier, using Strohmaier–Uski ’12

Disk (Dirichlet b.c.) Hyperbolic surface
Whitespace in the middle No whitespace
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Results

A microlocal statement

We assume that (M, g) has Anosov geodesic flow ϕt : S∗M → S∗M

T (S∗M) = E0 ⊕ Es ⊕ Eu; |dϕt(ρ)v | ≤ Ce−θ|t||v |,

{
t ≥ 0, v ∈ Es(ρ)

t ≤ 0, v ∈ Eu(ρ)

Using a quantization procedure

a ∈ C∞c (T ∗M) 7→ Oph(a) = a(x , hi ∂x) : L2(M)→ L2(M)

(−∆g − λ2)u = 0 =⇒ (−h2∆g − 1)u = 0, h := λ−1

Theorem 1′

Assume that a|S∗M 6≡ 0. Then ∃C = C (a) : for all h� 1, u ∈ L2(M)

‖u‖L2 ≤ C‖Oph(a)u‖L2 + C log(1/h)
h ‖(−h2∆g − 1)u‖L2
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Results

Theorem 1′

Assume that a|S∗M 6≡ 0. Then ∃C = C (a) : for all h� 1, u ∈ L2(M)

‖u‖ ≤ C‖Oph(a)u‖+ C log(1/h)
h ‖(−h2∆g − 1)u‖

Remarks
Implies Theorem 1: a = a(x) =⇒ Oph(a)u = au

Sharp: a|S∗M ≡ 0, (−h2∆g − 1)u = 0 =⇒ ‖Oph(a)u‖ ≤ Ch‖u‖
Cannot work for O(h/ log(1/h)) quasimodes: Brooks ’15,
Eswarathasan–Nonnenmacher ’17, Eswarathasan–Silberman ’17

Applications

Jin ’17: control/observability for Schrödinger equation
Jin ’17, D–Jin–Nonnenmacher ’19: exponential energy decay
for damped wave equation
Datchev–Jin WIP, using Jin–Zhang ’17: a formula for C (a)
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Results

Semiclassical measures

Take a high frequency sequence of Laplacian eigenfunctions

(−h2
j ∆g − 1)uj = 0, ‖uj‖ = 1, hj → 0

We say uj converges weakly to a measure µ on T ∗M if

∀a ∈ C∞c (T ∗M) : 〈Ophj (a)uj , uj〉L2 →
∫
T∗M

a dµ as j →∞

Call such limits µ semiclassical measures

Basic properties
µ is a probability measure, suppµ ⊂ S∗M

µ is invariant under the geodesic flow ϕt : S∗M → S∗M

Natural candidate: Liouville measure µL ∼ d vol (equidistribution)
Natural enemy: delta measure δγ on a closed geodesic (scarring)
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Results

Semiclassical measures and Theorem 1

(−h2
j ∆g − 1)uj = 0, ‖uj‖ = 1, hj → 0

∀a ∈ C∞c (T ∗M) : 〈Ophj (a)uj , uj〉L2 →
∫
T∗M

a dµ as j →∞

Theorem 1′: a|S∗M 6≡ 0 =⇒ ‖Ophj (a)uj‖ ≥ c > 0

Theorem 1′′

Let µ be a semiclassical measure on M. Then suppµ = S∗M

Brief overview of history

Quantum Ergodicity [Shnirelman ’74, Zelditch ’87, Colin de
Verdière ’85, Z–Zworski ’96]: µ = µL for density 1 sequence of uj ’s
Quantum Unique Ergodicity conjecture [Rudnick–Sarnak ’94]:
µ = µL for all eigenfunctions, that is µL is the only semiclassical
measure. Proved in the arithmetic case [Lindenstrauss ’06]
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Results

Semiclassical measures and Theorem 1

(−h2
j ∆g − 1)uj = 0, ‖uj‖ = 1, hj → 0

∀a ∈ C∞c (T ∗M) : 〈Ophj (a)uj , uj〉L2 →
∫
T∗M

a dµ as j →∞

Theorem 1′: a|S∗M 6≡ 0 =⇒ ‖Ophj (a)uj‖ ≥ c > 0

Theorem 1′′

Let µ be a semiclassical measure on M. Then suppµ = S∗M

Brief overview of history, continued

Entropy bounds [Anantharaman ’08, A–Nonnenmacher ’07,
Rivière ’10, Anantharaman–Silberman ’13]:
HKS(µ) ≥ c(M,g) > 0, in particular µ 6= δγ

Theorem 1′′: between QE and QUE and ‘orthogonal’ to entropy
bound. There exist µ with suppµ 6= S∗M, HKS(µ) > c(M,g)
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Fractal uncertainty principle

Main tool: fractal uncertainty principle (FUP)

No function can be localized in both position and frequency
near a fractal set

Definition
Fix ν > 0. A set X ⊂ R is ν-porous up to scale h if for each interval I ⊂ R
of length h ≤ |I | ≤ 1, there is an interval J ⊂ I , |J| = ν|I |, J ∩ X = ∅

Example: mid-third Cantor set C ⊂ [0, 1] is 1
6 -porous on scales 0 to 1

Theorem 2 [Bourgain–D ’18]

Assume that X ,Y ⊂ R are ν-porous up to scale h. Then ∃β = β(ν) > 0:
‖1lX (x)1lY (hi ∂x)‖L2(R)→L2(R) = O(hβ) as h→ 0

Note: enough that X ,Y be porous up to scales hαX , hαY , αX + αY > 1
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Proof

Proof of Theorem 1′

Theorem 1′

Assume that a|S∗M 6≡ 0. Then for all h� 1, u ∈ L2(M)

‖u‖L2 ≤ C‖Oph(a)u‖+ C log(1/h)
h ‖(−h2∆g − 1)u‖

Theorem 1′-weak

Assume that a|S∗M 6≡ 0. Then for all h� 1, u ∈ L2(M)

(−h2∆g − 1)u = 0 =⇒ ‖u‖ ≤ C log(1/h)‖Oph(a)u‖

To get rid of the log(1/h) term need to revise the argument
in a way inspired by Anantharaman ’08
We present the proof for the variable curvature case
but assume for simplicity (M, g) is hyperbolic, i.e. has curvature −1
WLOG a ≡ 1 on a nonempty open set U ⊂ S∗M called the hole
Semyon Dyatlov Control of eigenfunctions Apr 9, 2021 10 / 17
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Proof

Theorem 1′-weak
Assume that a ≡ 1 on a nonempty open U ⊂ S∗M. Then for h� 1

(−h2∆g − 1)u = 0 =⇒ ‖u‖ ≤ C log(1/h)‖Oph(a)u‖

Write I = A1 + A?, A1 = Oph(a), WFh(A?) ∩ U = ∅
Wave propagator U(t) = e−it

√
−∆g , U(t)u = e−it/hu

A(t) := U(−t)AU(t) =⇒ ‖A1(t)u‖ = ‖A1u‖
=⇒ u = A?(t)u +O(‖Oph(a)u‖)
Take N := τ log(1/h), τ < 1, use the above for t = N, . . . ,−N:

A− := A?(N) · · ·A?(1)A?(0), A+ := A?(0)A?(−1) · · ·A?(−N);

‖u‖ ≤ ‖A−A+u‖+ C log(1/h)‖Oph(a)u‖

Theorem 1′-weak now follows from the key estimate

‖A−A+‖L2→L2 = O(hβ), β = β(U) > 0
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Proof

WFh(A?) ∩ U = ∅ where U ⊂ S∗M open nonempty, called the hole
Need the key estimate ‖A−A+‖L2→L2 = O(hβ) where N = τ log(1/h)

A− := A?(N) · · ·A?(1)A?(0), A+ := A?(0)A?(−1) · · ·A?(−N)

Egorov’s Theorem =⇒ A± microlocalized in (ϕt = geodesic flow)

Γ±(N) := {ρ ∈ T ∗M | ϕ∓j(ρ) /∈ U for all j = 0, 1, . . . ,N}

Γ−(N), N = 0 Hole (in white) Γ+(N), N = 0
(using Arnold cat map model for the figures)
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Proof

WFh(A?) ∩ U = ∅ where U ⊂ S∗M open nonempty, called the hole
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Proof

Key estimate: ‖A−A+‖L2→L2 = O(hβ),
A± microlocalized on Γ±(N), N = τ log(1/h)

Γ+ smooth in the unstable direction,
porous up to scale hτ in the stable direction
Same true for Γ−, switching stable/unstable
The product A−A+ is not pseudodifferential
Will use FUP to show the key estimate

Challenges in variable curvature

Variable expansion rates of the flow ϕt

=⇒ take a dynamically fine partition
A? = A2 + · · ·+ AL and put N = local
Ehrenfest time for each word
Stable/unstable foliations are not C∞

=⇒ cannot make A± pseudodifferential
following D–Zahl ’16
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Proof

Reduction to FUP

?
⇐=

‖A−A+‖L2(M)→L2(M) = O(hβ) ‖1lX (x)1lY (hi ∂x)‖L2(R)→L2(R) = O(hβ)

Restrict to S∗M, remove the flow direction: 2D ⇐= 1D
Conjugate by a Fourier Integral Operator? But cannot straighten out
the stable/unstable foliations simultaneously (and they are not C∞)
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Proof

Cluster decomposition

Replace A− by Ã− which microlocalizes to an h1/6 neighborhood of Γ−

Write A+ =
∑

j A
+
j where each A+

j microlocalizes to an h2/3

neighborhood of some unstable leaf
h1/6 · h2/3 � h =⇒ Bj := Ã−A+

j are almost orthogonal:

‖B∗j Bj ′‖L2→L2 , ‖Bj ′B
∗
j ‖L2→L2 = O(h∞) when |j − j ′| � 1

By Cotlar–Stein enough to show

max
j
‖Ã−A+

j ‖L2→L2 = O(hβ)
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j are almost orthogonal:

‖B∗j Bj ′‖L2→L2 , ‖Bj ′B
∗
j ‖L2→L2 = O(h∞) when |j − j ′| � 1

By Cotlar–Stein enough to show

max
j
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Proof

Need ‖Ã−A+
j ‖L2→L2 = O(hβ); Ã− ↔ Γ̃− := h1/6 neighborhood of Γ−,

A+
j ↔ Γ+

j := Γ+ ∩ (h2/3-neighborhood of some unstable leaf Wj)

As before, restrict to S∗M and remove the flow direction
Unstable foliation has C 2− ⊂ C 3/2 regularity [Hurder–Katok ’90]
=⇒ construct C∞ symplectomorphism κ to T ∗R s.t. unstable
leaves h2/3-close to Wj are mapped h-close to horizontal lines
Then κ(Γ+

j ) ⊂ {ξ ∈ Ω+}, κ(Γ̃− ∩ Γ+
j ) ⊂ {x ∈ Ω−}

where Ω+,Ω− ⊂ R are porous on scales up to h, h1/6

Conjugate by an FIO quantizing κ to reduce to the FUP bound
‖1lΩ−(x)1lΩ+(hDx)‖L2→L2 = O(hβ)

κ−−−−→
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Need ‖Ã−A+
j ‖L2→L2 = O(hβ); Ã− ↔ Γ̃− := h1/6 neighborhood of Γ−,

A+
j ↔ Γ+

j := Γ+ ∩ (h2/3-neighborhood of some unstable leaf Wj)

As before, restrict to S∗M and remove the flow direction
Unstable foliation has C 2− ⊂ C 3/2 regularity [Hurder–Katok ’90]
=⇒ construct C∞ symplectomorphism κ to T ∗R s.t. unstable
leaves h2/3-close to Wj are mapped h-close to horizontal lines
Then κ(Γ+

j ) ⊂ {ξ ∈ Ω+}, κ(Γ̃− ∩ Γ+
j ) ⊂ {x ∈ Ω−}

where Ω+,Ω− ⊂ R are porous on scales up to h, h1/6

Conjugate by an FIO quantizing κ to reduce to the FUP bound
‖1lΩ−(x)1lΩ+(hDx)‖L2→L2 = O(hβ)

To make the above arguments rigorous, use Egorov’s Theorem up to
local Ehrenfest time (adapted from Rivière ’10) and long logarithmic
time propagation of Lagrangian states due to Anantharaman ’08,
Anantharaman–Nonnenmacher ’07, Nonnenmacher–Zworski ’09
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Thank you for your attention!

Semyon Dyatlov Control of eigenfunctions Apr 9, 2021 17 / 17


	Overview
	Results
	Fractal uncertainty principle
	Proof

