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Bose-Einstein condensates
I Ultra-cold Bose gases well described by nonlinear Gross-Pitaevskii equation(

−∆ + V (x) + w ∗ |u|2
)

=

{
λu

i∂tu

Left: Experimental pictures of fast rotating Bose-Einstein condensates. Ketterle et al at MIT in 2001.
Right: Simulation of Gross-Pitaevskii equation with software GPELab (X. Antoine & R. Duboscq)

Here: associated nonlinear Gibbs measure, describing the formation of the BEC
close to the critical temperature
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Classical Gibbs measures
I Classical Hamiltonian H(x , p) = |p|2 + V (x)

Gibbs (probability) measure

µ(x , p) = Z−1 exp

(
−H(x , p)

T

)
with Z =

¨
exp

(
−H(x , p)

T

)
dx dp

invariant under Hamiltonian flow (Newton’s equations)

{
ẋ = ∇pH(x , p)

ṗ = −∇xH(x , p)

unique solution to Gibb’s variational problem

min
f≥0´
f =1

{ˆ
H f + T

ˆ
f log f

}
= −T log

(ˆ
e−H/T

)
= −T log Z
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Infinite-dimensional Gibbs measures

E(u) =

ˆ
Ω

(
|∇u(x)|2+V (x)|u(x)|2

)
dx +

1

2

ˆ
Ω

ˆ
Ω

w(x − y)|u(x)|2|u(y)|2 dx dy

Ω ⊂ Rd , bounded or not

V =external potential, confining if Ω unbounded

w interaction potential

Nonlinear Gibbs measure

dµ(u) = “Z−1 e−E(u) du”

formally invariant under Hamiltonian flow (<(u) & =(u))

i∂tu =
(
−∆ + V + |u|2 ∗ w

)
u

I Difficulty: µ singular object, E(u) =∞ and often
´

Ω
|u|2 =∞, µ–a.s.
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Use of nonlinear measures

dµ(u) = “Z−1 e−E(u) du”

PDE to construct solutions to NLS equation, for rough initial data
Lebowitz-Rose-Speer ’88, Bourgain ’90s, Burq-Thomann-Tzvetkov ’00s,...

SPDE to construct solutions of rough equations (with noise)
Hairer ’10s, ...

Euclidean Quantum Field Theory through a Feyman-Kac type formula
Glimm-Jaffe ’70s, ...

Critical phenomena in statistical mechanics like BEC
see e.g. books by Zinn-Justin, ...

I Main goal: Derivation from ‘microscopic’ (bosonic) Hamiltonian

Hn,λ =
n∑

j=1

(−∆)xj + V (xj) + λ
∑

1≤j<k≤n

w(xj − xk) acting on L2
s (Ωn)

mean-field limit λ→ 0 equivalent to zooming at the BEC phase transition

Simplification for the talk

Ω =unit cube with periodic boundary conditions and V ≡ κ ≥ 0
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µ as an absolutely continuous measure w.r.t. µ0

Nonlinear term

I(u) :=
1

2

ˆ
Ω

ˆ
Ω

|u(x)|2|u(y)|2w(x − y) dx dy

I start with w ≡ 0 and define µ relatively to the free measure µ0

dµ(u) =
e−
´

Ω
|∇u|2+κ|u|2−I(u) du´

e−
´

Ω
|∇u|2+κ|u|2−I(u) du

=

´
e−
´

Ω
|∇u|2+κ|u|2 du´

e−
´

Ω
|∇u|2+κ|u|2−I(u) du︸ ︷︷ ︸

(zr )−1

× e−I(u) × e−
´

Ω
|∇u|2+κ|u|2 du´

e−
´

Ω
|∇u|2+κ|u|2 du︸ ︷︷ ︸

:=dµ0(u)
Gaussian (Wiener) measure

I zr =

ˆ
e−I(u) dµ0(u) ∈ [0, 1] in repulsive case I(u) ≥ 0

I zr > 0 iff I(u) is finite on a set of positive µ0-measure
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Gaussian measures in infinite dimensions
A > 0 self-adjoint with compact resolvent on Hilbert space H, Avj = λjvj

Theorem (Gaussian measures)

dν(u) = “
e−〈u,Au〉´

H
e−〈u,Au〉 du

” =
⊗
j≥1

(
λj
π

e−λj |uj |2 duj

)
, uj = 〈vj , u〉 ∈ C

is a well-defined probability measure on H⇐⇒ tr(A−1) =
∑
j≥1

1

λj
<∞.

Theorem (Zero-one law for Gaussian measures)

Let B > 0 be another self-adj. operator on H. Then we have

either
´
H

eε〈u,Bu〉dν(u) <∞ for some ε > 0;

or 〈u,Bu〉 = +∞ ν–a.s.

The two alternatives can be detected by looking at

ˆ
H

〈u,Bu〉 dν(u) = tr(BA−1)

Examples: I B = 1, I B = A⇒ 〈u,Au〉 = +∞ ν–a.s.

Skorokhod, Integration in Hilbert space (1974). Bogachev, Gaussian measures (1998)
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Gaussian measures: application to A = −∆ + κ

I Since we have periodic BC

trL2(Ω)(−∆ + κ)−1 =
∑

k∈2πZd

1

|k |2 + κ
<∞ only in 1D

µ0 well-defined on L2(Ω) only in 1D

I For d ≥ 2, change ambient Hilbert space

〈u,Au〉 =
〈
A−

α
2 u,A1+αA−

α
2 u
〉

:=
〈
u,A1+αu

〉
H−α

Theorem (Free Gibbs measure)

Gaussian measure µ0 of A = −∆ + κ is well defined on Hs for all s < 1− d/2 and
all κ > 0. We have ||u||Hs = +∞ µ0–almost surely for all s ≥ 1− d/2.

I
ˆ

Ω

|u(x)|2 dx = +∞ for d ≥ 2,

ˆ
Ω

|∇u(x)|2 dx = +∞ for d ≥ 1
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Nonlinear Gibbs measures: 1D case

Nonlinear term

I(u) :=
1

2

ˆ
Ω

ˆ
Ω

|u(x)|2|u(y)|2w(x − y) dx dy

I 1D case: µ0 concentrated on Hs for all s < 1/2, hence on Lp for all 1 ≤ p <∞

Theorem (1D case)

Let d = 1 and w ∈M1 + L∞ with w ≥ 0 or ŵ ≥ 0 so that I ≥ 0. Then
µ = (zr )

−1e−Iµ0 well defined in 1D. If w = λδ with λ < λc , then
µ = (zr )

−1e+Iµ0 is also well-defined.

Lebowitz-Rose-Speer, J. Statist. Phys., 1988

I Dimensions d ≥ 2: I never well defined for w 6= 0, renormalization needed
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Renormalized mass for d = 2, 3
ˆ
‖PNu‖2dµ0(u) =

ˆ
PNH

( N∑
j=1

|uj |2
) N∏

j=1

λje
−λj |uj |2

π
duj =

N∑
n=1

1

λj
= tr(PNA−1)→ +∞

Definition (Renormalized=Wick-ordered mass)

MN(u) := ‖PNu‖2 −
ˆ
‖PNu‖2dµ0(u) =

N∑
j=1

(
|uj |2 −

1

λj

)
ˆ (
MN(u)−MK (u)

)2

dµ0(u) = (· · · ) =
N∑

j=K+1

1

(λj)2

Theorem (Renormalized mass)

If tr(A−2) <∞, then MN converges strongly in L2(Hs , dµ0) to Mren called the
renormalized mass. We have

´
eβMren(u) dµ0(u) <∞ for every β < λ1(A).

I tr(−∆ + κ)−2 <∞ in dimensions d = 1, 2, 3

I Similar renormalization for 〈u,Bu〉 if tr(B∗A−1BA−1) <∞
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Renormalized interaction for d = 2, 3

Theorem (Wick-renormalized interaction)

We assume that ŵ ≥ 0 and w ∈ Lp(Rd) for 1 < p ≤ ∞ if d = 2 and 3 < p ≤ ∞
if d = 3. Then

IN(u) :=
1

2

¨
Ω×Ω

(
|PNu(x)|2 −

〈
|PNu(x)|2

〉
µ0

)
×

×
(
|PNu(y)|2 −

〈
|PNu(y)|2

〉
µ0

)
w(x − y) dx dy ≥ 0

converges strongly to a limit Iren(u) ≥ 0 in L1(Hs , dµ0), withˆ
Iren(u) dµ0(u) =

1

2

¨
Ω×Ω

w(x − y)|Gκ(x , y)|2 dx dy

where Gκ is the Green’s function of −∆ + κ on Ω.

dµ := z−1
r e−Iren(u)dµ0(u), zr :=

ˆ
e−Iren(u)dµ0(u)

Rmk. There is a renormalized time-dependent G-P equation, well-posed in Hs , for
which µ is invariant. Bourgain ’94–99
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Quantum model and the mean-field limit
I To get µ we have to work in Fock space F := C⊕⊕n≥1 L2

s (Ωn),

Hλ =
⊕
n≥0

( n∑
j=1

(−∆ + κ)xj + λ
∑

1≤j<k≤n

w(xj − xk)

)
︸ ︷︷ ︸

Hn,λ

= H0 + λW

=

ˆ
Ω

a†(x)(−∆x + κ)a(x) dx +
λ

2

¨
Ω×Ω

a†(x)a†(y)w(x − y)a(x)a(y) dx dy

I 2D/3D: replace a†(x)a(x) by a†(x)a(x)−
〈
a†(x)a(x)

〉
free

which amounts to

H ren
n,λ =

n∑
j=1

(
−∆ + κ−δκ(λ)ŵ(0)

)
xj

+ λ
∑

1≤j<k≤n

w(xj − xk)+
δκ(λ)2ŵ(0)

2λ

δκ(λ) := λ
∑

k∈2πZ2

1

eλ(|k|2+κ) − 1
∼
λ→0

{
log(λ−1)

4π (2D)
ζ(3/2)

8π
3
2
λ−

1
2 (3D)

Quantum states

Γλ = e−λH
ren
λ /Zλ with Zλ = trF

[
e−λH

ren
λ

]
, Γ0 = Z−1

0 e−λH0 , Z0 = trF
[
e−λH0

]
I k-particle density matrix: Γ

(k)
λ = Z−1

λ

∑
n≥k

n!
(n−k)! trk+1,...,N

[
e−λHn,λ

]
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Convergence

Theorem (Derivation of µ)

Let κ > 0, ŵ ≥ 0 with w ∈M1 + L∞ in 1D and (1 + |k |2)ŵ(k) ∈ `1 in 2D/3D.

lim
λ→0

Zλ
Z0

= zr =

ˆ
e−Iren(u) dµ0(u)

lim
λ→0

λkΓ
(k)
λ =

ˆ
|u⊗k〉〈u⊗k | dµ(u), ∀k ≥ 1

in trace (1D) or Hilbert-Schmidt (2D/3D) norm. The moments on the right
characterize the measure µ.

More complicated for other boundary conditions or in a confining potential. Need
to use reference Gaussian measure solving nonlinear equation of Hartree type

1D case: M.L., Nam, Rougerie, J. Éc. polytech. Math., 2015

1D and 2D/3D with modified quantum state: Fröhlich, Knowles, Schlein,
Sohinger, Comm. Math. Phys., 2017

2D case: LNR, ArXiv 2018

2D/3D case: LNR, Invent. Math., 2021. FKSS, ArXiV, 2020

1D time-dependent: FKSS, Adv. Math. 2019

Mathieu LEWIN (CNRS / Paris-Dauphine) Nonlinear Gibbs measures TexAMP, April 2021 13 / 18



Gaussian measures / free Bose gas phase transition

Noninteracting bosons in a large cube CL = (−L/2, L/2)d with periodic BC, at
temperature T and chemical potential −κ̃ < 0

I Microscopic scale:

grand-canonical one-particle density matrix is γ̃L =
(

e
−∆L+κ̃

T − 1
)−1

nb of particles per unit volume

1

Ld

∑
k∈2πZd/L

1

e
|k|2+κ̃

T − 1
−→
L→∞

T
d
2

(2π)d

ˆ
Rd

dk

ek2+κ̃/T − 1

critical density ρc(T ) = T
d
2

(2π)d

´
Rd

dk
ek2−1

=

+∞ d = 1, 2

T
d
2 ζ( d

2 )
2dπ

d
2

<∞ d ≥ 3

Canonical case: imposing ρ > ρc(T ) gives macroscopically occupied mode

γ̃can
L ' Ld(ρ− ρc(T ))|L− d

2 〉〈L− d
2 |︸ ︷︷ ︸

BEC

+
1

e
−∆Rd

T − 1

I Emergence of BEC: take κ̃L → 0+ and look at macroscopic scale y = x/L
Thirring, Quantum Mathematical Physics
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I Macroscopic scale (in Ω = C1): γL =
(

e
−∆1+L2κ̃L

TL2 − 1
)−1

κ̃L :=
κ

L2
, λ =

1

TL2
→ 0

λγL =
λ

eλ(−∆1+κ) − 1
−→
L→∞

1

−∆1 + κ
=

ˆ
|u〉〈u| dµ0(u)

density=


cκTL + o(L) 1D
T
2π log(L) + O(1) 2D

ρc(T )− cκ
T
L + o(L−1) 3D

T

ρ

BEC

∼ −T
L

Conclusion

Chemical potential of order −κ/L2 corresponds to zooming at transition

Gaussian measure µ0 with covariance (−∆ + κ)−1 on Ω = C1 describes
system at macroscopic scale

Our result for the interacting system in Ω corresponds to a microscopic
interaction L−4w(x/L) living at macro scale but small in intensity
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Strategy: variational, based on entropy

− log tr e−A = min
M≥0

tr M=1

{
tr(AM) + tr(M log M)

}
 M0 =

e−A

tr(e−A)

− log
tr e−A−B

tr e−A
= min

M≥0
tr M=1

{
H(M,M0)︸ ︷︷ ︸

tr M(log M−log M0)
quantum relative entropy

+ tr(BM)
}

 M =
e−A−B

tr(e−A−B)

− log zr = − log

(ˆ
e−Iren(u)dµ0(u)

)
= min
ν probability

measure

{
Hcl(ν, µ0)︸ ︷︷ ︸´(

dν
dµ0

)
log
(

dν
dµ0

)
dµ0

classical relative entropy

+

ˆ
Iren(u) dν(u)

}
 µ
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Semi-classical / de Finetti measures

λHλ = λ

ˆ
Ω

a†(x)(−∆x + κ)a(x) dx +
λ2

2

¨
Ω×Ω

a†(x)a†(y)w(x − y)a(x)a(y) dx dy

I ∞-dim. semi-classical analysis = quantum Hewitt-Savage/de Finetti

A priori bounds on density matrices =⇒ ∃ν such that

weak lim
λ→0

λkΓ
(k)
λ =

ˆ
|u⊗k〉〈u⊗k | dν(u) ∀k ≥ 1

Ammari-Nier 2008, M.L.-Nam-Rougerie ’2014

I Show that ν solves variational problem for µ. Lower bound relies on:
1 Monotonicity of relative entropy + Berezin-Lieb-type inequalities (any d ≥ 1):

lim inf
λ→0

H(Γλ, Γ0) ≥ Hcl(ν, µ0)

M.L.-Nam-Rougerie ’2015

2 Interaction is wlsc

lim inf
λ→0

λ2 tr(WrenΓλ) ≥
ˆ
Iren(u) dν(u)

In 1D: Fatou since PDM bounded in trace-class and W ≥ 0
Very difficult in 2D/3D: Wren contains divergent terms which are supposed to
cancel each other
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New correlation inequality

Lower bound on interaction energy requires to control high energy two-particle
correlations

Lemma (Controlling variance by first moments)

tr
(
A2e−H

)
tr(e−H)

≤ 2(1 + a2 + η2)

a
η eaη

for all a > 0 and all bounded operator A, where

η := sup
ε∈[−a,a]

∣∣tr
(
Ae−H+εA

)∣∣
tr(e−H+εA)

+ a
∥∥[[H,A],A]

∥∥√1 + ‖A‖2,

Think of A A− tr(Ae−H)

tr(e−H)
so that the first term in the sup is small

We typically apply this to A = a†kak for large momentum k, which gives us
access to the 2-PDM
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