

European Research Council

Derivation of nonlinear Gibbs measures from quantum mechanics

Mathieu LEWIN

mathieu.lewin@math.cnrs.fr

(CNRS & Université Paris-Dauphine)

collaboration with Phan Thanh Nam (Munich) & Nicolas Rougerie (Lyon)

TexAMP, April 2021

Mathieu LEWIN (CNRS / Paris-Dauphine)

Bose-Einstein condensates

▶ Ultra-cold Bose gases well described by nonlinear Gross-Pitaevskii equation

$$\left(-\Delta + V(x) + w * |u|^2\right) = \begin{cases} \lambda u \\ i\partial_t u \end{cases}$$

Left: Experimental pictures of fast rotating Bose-Einstein condensates. Ketterle *et al* at MIT in 2001. *Right:* Simulation of Gross-Pitaevskii equation with software GPELab (X. Antoine & R. Duboscq)

Here: associated nonlinear Gibbs measure, describing the formation of the BEC close to the critical temperature

Mathieu LEWIN (CNRS / Paris-Dauphine)

Classical Gibbs measures

• Classical Hamiltonian $H(x, p) = |p|^2 + V(x)$

Gibbs (probability) measure

$$\mu(x,p) = Z^{-1} \exp\left(-\frac{H(x,p)}{T}\right)$$
 with $Z = \iint \exp\left(-\frac{H(x,p)}{T}\right) dx dp$

invariant under Hamiltonian flow (Newton's equations)

 $\begin{cases} \dot{x} = \nabla_p H(x, p) \\ \dot{p} = -\nabla_x H(x, p) \end{cases}$

unique solution to Gibb's variational problem

$$\min_{\substack{f \ge 0\\ f \neq 1}} \left\{ \int Hf + T \int f \log f \right\} = -T \log \left(\int e^{-H/T} \right) = -T \log Z$$

Infinite-dimensional Gibbs measures

$$\mathcal{E}(u) = \int_{\Omega} \left(|\nabla u(x)|^2 + V(x)|u(x)|^2 \right) \, dx + \frac{1}{2} \int_{\Omega} \int_{\Omega} w(x-y)|u(x)|^2 |u(y)|^2 \, dx \, dy$$

- $\Omega \subset \mathbb{R}^d$, bounded or not
- V=external potential, confining if Ω unbounded
- w interaction potential

Nonlinear Gibbs measure

$$d\mu(u) = "Z^{-1} e^{-\mathcal{E}(u)} du"$$

formally invariant under Hamiltonian flow $(\Re(u) \& \Im(u))$

$$i\partial_t u = (-\Delta + V + |u|^2 * w) u$$

Difficulty: μ singular object, $\mathcal{E}(u) = \infty$ and often $\int_{\Omega} |u|^2 = \infty$, μ -a.s.

Use of nonlinear measures

 $d\mu(u) = "Z^{-1} e^{-\mathcal{E}(u)} du"$

- **PDE** to construct solutions to NLS equation, for rough initial data Lebowitz-Rose-Speer '88, Bourgain '90s, Burg-Thomann-Tzvetkov '00s,...
- **SPDE** to construct solutions of rough equations (with noise) $H_{\text{airer '10s, ...}}$
- Euclidean Quantum Field Theory through a Feyman-Kac type formula Glimm-Jaffe '70s, ...
- Critical phenomena in statistical mechanics like BEC see e.g. books by Zinn-Justin, ...
- Main goal: Derivation from 'microscopic' (bosonic) Hamiltonian

$$H_{n,\lambda} = \sum_{j=1}^{n} (-\Delta)_{x_j} + V(x_j) + \lambda \sum_{1 \le j < k \le n} w(x_j - x_k) \quad \text{acting on } L^2_s(\Omega^n)$$

mean-field limit $\lambda \rightarrow 0$ equivalent to zooming at the BEC phase transition

Simplification for the talk

 $\Omega=$ unit cube with periodic boundary conditions and $V\equiv\kappa\geq0$

μ as an absolutely continuous measure w.r.t. μ_0

Nonlinear term

$$\mathcal{I}(u) := \frac{1}{2} \int_{\Omega} \int_{\Omega} |u(x)|^2 |u(y)|^2 w(x-y) \, dx \, dy$$

▶ start with $w \equiv 0$ and define μ relatively to the free measure μ_0

$$d\mu(u) = \frac{e^{-\int_{\Omega} |\nabla u|^2 + \kappa |u|^2 - \mathcal{I}(u)} du}{\int e^{-\int_{\Omega} |\nabla u|^2 + \kappa |u|^2 - \mathcal{I}(u)} du}$$

=
$$\underbrace{\frac{\int e^{-\int_{\Omega} |\nabla u|^2 + \kappa |u|^2} du}{\int e^{-\int_{\Omega} |\nabla u|^2 + \kappa |u|^2 - \mathcal{I}(u)} du}}_{(z_r)^{-1}} \times e^{-\mathcal{I}(u)} \times \underbrace{\frac{e^{-\int_{\Omega} |\nabla u|^2 + \kappa |u|^2} du}{\int e^{-\int_{\Omega} |\nabla u|^2 + \kappa |u|^2} du}}_{\text{Gaussian (Wiener) measure}}$$

z_r = ∫ *e*^{-*I*(*u*)} *d*µ₀(*u*) ∈ [0, 1] in repulsive case *I*(*u*) ≥ 0 *z_r* > 0 iff *I*(*u*) is finite on a set of positive µ₀-measure

Mathieu LEWIN (CNRS / Paris-Dauphine)

Gaussian measures in infinite dimensions

A > 0 self-adjoint with compact resolvent on Hilbert space \mathfrak{H} , $Av_j = \lambda_j v_j$

Theorem (Gaussian measures)

$$d\nu(u) = "\frac{e^{-\langle u, Au \rangle}}{\int_{\mathfrak{H}} e^{-\langle u, Au \rangle} du} " = \bigotimes_{j \ge 1} \left(\frac{\lambda_j}{\pi} e^{-\lambda_j |u_j|^2} du_j \right), \qquad u_j = \langle v_j, u \rangle \in \mathbb{C}$$

is well-defined probability measure on $\mathfrak{H} \iff \operatorname{tr}(A^{-1}) = \sum_{j \ge 1} \frac{1}{\lambda_j} < \infty.$

Theorem (Zero-one law for Gaussian measures)

Let
$$B > 0$$
 be another self-adj. operator on \mathfrak{H} . Then we have

• either
$$\int_{\mathfrak{H}} e^{\varepsilon \langle u, Bu \rangle} d\nu(u) < \infty$$
 for some $\varepsilon > 0$;

• or $\langle u, Bu \rangle = +\infty \nu - a.s.$

The two alternatives can be detected by looking at $\int_{\mathfrak{H}} \langle u, Bu \rangle d\nu(u) = \operatorname{tr}(BA^{-1})$

Examples:
$$\triangleright$$
 $B = 1$, \triangleright $B = A \Rightarrow \langle u, Au \rangle = +\infty \nu$ -a.s.

Skorokhod, Integration in Hilbert space (1974). Bogachev, Gaussian measures (1998)

Mathieu LEWIN (CNRS / Paris-Dauphine)

is a

Gaussian measures: application to $A = -\Delta + \kappa$

Since we have periodic BC

$$\operatorname{tr}_{L^2(\Omega)}(-\Delta+\kappa)^{-1} = \sum_{k\in 2\pi\mathbb{Z}^d} rac{1}{|k|^2+\kappa} < \infty ext{ only in } 1\mathsf{D}$$

 μ_0 well-defined on $L^2(\Omega)$ only in 1D

► For $d \ge 2$, change ambient Hilbert space $\langle u, Au \rangle = \langle A^{-\frac{\alpha}{2}}u, A^{1+\alpha}A^{-\frac{\alpha}{2}}u \rangle := \langle u, A^{1+\alpha}u \rangle_{H^{-\alpha}}$

Theorem (Free Gibbs measure)

Gaussian measure μ_0 of $A = -\Delta + \kappa$ is well defined on H^s for all s < 1 - d/2 and all $\kappa > 0$. We have $\|u\|_{H^s} = +\infty \mu_0$ -almost surely for all $s \ge 1 - d/2$.

Nonlinear Gibbs measures: 1D case

Nonlinear term

$$\mathcal{I}(u) := \frac{1}{2} \int_{\Omega} \int_{\Omega} |u(x)|^2 |u(y)|^2 w(x-y) \, dx \, dy$$

▶ 1D case: μ_0 concentrated on H^s for all s < 1/2, hence on L^p for all $1 \le p < \infty$

Theorem (1D case)

Let d = 1 and $w \in \mathcal{M}^1 + L^{\infty}$ with $w \ge 0$ or $\widehat{w} \ge 0$ so that $\mathcal{I} \ge 0$. Then $\mu = (z_r)^{-1} e^{-\mathcal{I}} \mu_0$ well defined in 1D. If $w = \lambda \delta$ with $\lambda < \lambda_c$, then $\mu = (z_r)^{-1} e^{+\mathcal{I}} \mu_0$ is also well-defined.

Lebowitz-Rose-Speer, J. Statist. Phys., 1988

Dimensions $d \ge 2$: \mathcal{I} never well defined for $w \ne 0$, renormalization needed

Renormalized mass for d = 2, 3

$$\int \|P_N u\|^2 d\mu_0(u) = \int_{P_N \mathfrak{H}} \left(\sum_{j=1}^N |u_j|^2 \right) \prod_{j=1}^N \frac{\lambda_j e^{-\lambda_j |u_j|^2}}{\pi} \, du_j = \sum_{n=1}^N \frac{1}{\lambda_j} = \operatorname{tr}(P_N A^{-1}) \to +\infty$$

Definition (Renormalized=Wick-ordered mass)

$$\mathcal{M}_N(u) := \|P_N u\|^2 - \int \|P_N u\|^2 d\mu_0(u) = \sum_{j=1}^N \left(|u_j|^2 - \frac{1}{\lambda_j} \right)$$

$$\int \left(\mathcal{M}_{N}(u) - \mathcal{M}_{K}(u)\right)^{2} d\mu_{0}(u) = (\cdots) = \sum_{j=K+1}^{N} \frac{1}{(\lambda_{j})^{2}}$$

Theorem (Renormalized mass)

If $tr(A^{-2}) < \infty$, then \mathcal{M}_N converges strongly in $L^2(H^s, d\mu_0)$ to \mathcal{M}_{ren} called the renormalized mass. We have $\int e^{\beta \mathcal{M}_{ren}(u)} d\mu_0(u) < \infty$ for every $\beta < \lambda_1(A)$.

tr(-Δ + κ)⁻² < ∞ in dimensions d = 1,2,3
 Similar renormalization for ⟨u, Bu⟩ if tr(B*A⁻¹BA⁻¹) < ∞

Mathieu LEWIN (CNRS / Paris-Dauphine)

Renormalized interaction for d = 2, 3

Theorem (Wick-renormalized interaction)

We assume that $\widehat{w} \ge 0$ and $w \in L^p(\mathbb{R}^d)$ for 1 if <math>d = 2 and 3 if <math>d = 3. Then

$$\mathcal{I}_{N}(u) := \frac{1}{2} \iint_{\Omega \times \Omega} \left(|P_{N}u(x)|^{2} - \langle |P_{N}u(x)|^{2} \rangle_{\mu_{0}} \right) \times \\ \times \left(|P_{N}u(y)|^{2} - \langle |P_{N}u(y)|^{2} \rangle_{\mu_{0}} \right) w(x - y) \, dx \, dy \ge 0$$

onverges strongly to a limit $\mathcal{I}_{ren}(u) \ge 0$ in $L^{1}(H^{s}, d\mu_{0})$, with
$$\int_{\Omega} \frac{1}{2\pi} \int_{\Omega} \frac{1}$$

$$\int \mathcal{I}_{\rm ren}(u) \, d\mu_0(u) = \frac{1}{2} \iint_{\Omega \times \Omega} w(x - y) |G_{\kappa}(x, y)|^2 \, dx \, dy$$

where G_{κ} is the Green's function of $-\Delta + \kappa$ on Ω .

$$d\mu := z_r^{-1} e^{-\mathcal{I}_{\text{ren}}(u)} d\mu_0(u), \qquad z_r := \int e^{-\mathcal{I}_{\text{ren}}(u)} d\mu_0(u)$$

Rmk. There is a **renormalized time-dependent G-P equation**, well-posed in H^s , for which μ is invariant. Bourgain '94–99

Mathieu LEWIN (CNRS / Paris-Dauphine)

C

Quantum model and the mean-field limit

To get
$$\mu$$
 we have to work in Fock space $\mathcal{F} := \mathbb{C} \oplus \bigoplus_{n \ge 1} L^2_s(\Omega^n)$,

$$\mathbb{H}_{\lambda} = \bigoplus_{n \ge 0} \underbrace{\left(\sum_{j=1}^n (-\Delta + \kappa)_{x_j} + \lambda \sum_{1 \le j < k \le n} w(x_j - x_k)\right)}_{H_{n,\lambda}} = \mathbb{H}_0 + \lambda \mathbb{W}$$

$$= \int_{\Omega} a^{\dagger}(x)(-\Delta_x + \kappa)a(x) \, dx + \frac{\lambda}{2} \iint_{\Omega \times \Omega} a^{\dagger}(x)a^{\dagger}(y)w(x - y)a(x)a(y) \, dx \, dy$$

▶ 2D/3D: replace $a^{\dagger}(x)a(x)$ by $a^{\dagger}(x)a(x) - \langle a^{\dagger}(x)a(x) \rangle_{\text{free}}$ which amounts to

$$H_{n,\lambda}^{\text{ren}} = \sum_{j=1}^{n} \left(-\Delta + \kappa - \delta_{\kappa}(\lambda) \widehat{w}(0) \right)_{x_{j}} + \lambda \sum_{1 \le j < k \le n} w(x_{j} - x_{k}) + \frac{\delta_{\kappa}(\lambda)^{2} \widehat{w}(0)}{2\lambda}$$
$$\delta_{\kappa}(\lambda) := \lambda \sum_{j=1}^{n} \frac{1}{2\lambda} \sum_{j \le k \le n} \frac{1}{2\lambda} \sum_{j \le k \le n} \frac{\log(\lambda^{-1})}{2\lambda} \sum_{j \le k \le n} \frac{\log(\lambda^{-1})}{2\lambda}$$

$$\delta_{\kappa}(\lambda) := \lambda \sum_{k \in 2\pi\mathbb{Z}^2} \frac{1}{e^{\lambda(|k|^2 + \kappa)} - 1} \sum_{\lambda \to 0}^{\infty} \left\{ \frac{\zeta(3/2)}{8\pi^{\frac{3}{2}}} \lambda^{-\frac{1}{2}} \right\} (3D)$$

Quantum states

1

$$\Gamma_{\lambda} = e^{-\lambda \mathbb{H}_{\lambda}^{\text{ren}}} / Z_{\lambda} \text{ with } Z_{\lambda} = \text{tr}_{\mathcal{F}} \left[e^{-\lambda \mathbb{H}_{\lambda}^{\text{ren}}} \right], \ \Gamma_{0} = Z_{0}^{-1} e^{-\lambda \mathbb{H}_{0}}, \ Z_{0} = \text{tr}_{\mathcal{F}} \left[e^{-\lambda \mathbb{H}_{0}} \right]$$

► k-particle density matrix:
$$\Gamma_{\lambda}^{(k)} = Z_{\lambda}^{-1} \sum_{n \ge k} \frac{n!}{(n-k)!} \operatorname{tr}_{k+1,...,N} \left[e^{-\lambda H_{n,\lambda}} \right]$$

Mathieu LEWIN (CNRS / Paris-Dauphine)

Convergence

Theorem (Derivation of μ)

Let $\kappa > 0$, $\widehat{w} \ge 0$ with $w \in \mathcal{M}^1 + L^{\infty}$ in 1D and $(1 + |k|^2)\widehat{w}(k) \in \ell^1$ in 2D/3D.

$$\lim_{\lambda \to 0} \frac{-\lambda}{Z_0} = z_r = \int e^{-\mathcal{L}_{ren}(u)} d\mu_0(u)$$
$$\lim_{\lambda \to 0} \lambda^k \Gamma_{\lambda}^{(k)} = \int |u^{\otimes k}\rangle \langle u^{\otimes k}| d\mu(u), \qquad \forall k \ge 1$$

in trace (1D) or Hilbert-Schmidt (2D/3D) norm. The moments on the right characterize the measure μ .

- More complicated for other boundary conditions or in a confining potential. Need to use reference Gaussian measure solving nonlinear equation of Hartree type
- 1D case: M.L., Nam, Rougerie, J. Éc. polytech. Math., 2015
- 1D and 2D/3D with modified quantum state: Fröhlich, Knowles, Schlein, Sohinger, *Comm. Math. Phys.*, 2017
- 2D case: LNR, ArXiv 2018
- 2D/3D case: LNR, Invent. Math., 2021. FKSS, ArXiV, 2020
- 1D time-dependent: FKSS, Adv. Math. 2019

Gaussian measures / free Bose gas phase transition

Noninteracting bosons in a large cube $C_L = (-L/2, L/2)^d$ with periodic BC, at temperature T and chemical potential $-\tilde{\kappa} < 0$

Microscopic scale:

• grand-canonical one-particle density matrix is $ilde{\gamma}_L = \left(e^{rac{-\Delta_L + ar{\kappa}}{T}} - 1
ight)^{-1}$

• nb of particles per unit volume

$$\frac{1}{L^d} \sum_{k \in 2\pi \mathbb{Z}^d/L} \frac{1}{e^{\frac{|k|^2 + \tilde{\kappa}}{T}} - 1} \xrightarrow{L \to \infty} \frac{T^{\frac{d}{2}}}{(2\pi)^d} \int_{\mathbb{R}^d} \frac{dk}{e^{k^2 + \tilde{\kappa}/T} - 1}$$

• critical density
$$\rho_c(T) = \frac{T^{\frac{d}{2}}}{(2\pi)^d} \int_{\mathbb{R}^d} \frac{dk}{e^{k^2} - 1} = \begin{cases} +\infty & d = 1, 2\\ \frac{T^{\frac{d}{2}}\zeta(\frac{d}{2})}{2^d \pi^{\frac{d}{2}}} < \infty & d \ge 3 \end{cases}$$

• Canonical case: imposing $\rho > \rho_c(T)$ gives macroscopically occupied mode

$$\widetilde{\gamma}_{L}^{\mathsf{can}} \simeq \underbrace{L^{d}(
ho -
ho_{c}(\mathcal{T}))|L^{-\frac{d}{2}}\rangle\langle L^{-\frac{d}{2}}|}_{\mathsf{BEC}} + \frac{1}{e^{\frac{-\Delta_{\mathbb{R}}d}{\mathcal{T}}} - 1}$$

Emergence of BEC: take $\tilde{\kappa}_L \rightarrow 0^+$ and look at macroscopic scale y = x/L

Thirring, Quantum Mathematical Physics

► Macroscopic scale (in $\Omega = C_1$): $\gamma_L = \left(e^{\frac{-\Delta_1 + L^2 \tilde{\kappa}_L}{TL^2}} - 1\right)^{-1}$

$$\tilde{\kappa}_{L} := \frac{\kappa}{L^{2}}, \qquad \lambda = \frac{1}{TL^{2}} \to 0$$

$$\lambda \gamma_{L} = \frac{\lambda}{e^{\lambda(-\Delta_{1}+\kappa)} - 1} \xrightarrow{L \to \infty} \frac{1}{-\Delta_{1}+\kappa} = \int |u\rangle \langle u| \ d\mu_{0}(u)$$

$$density = \begin{cases} c_{\kappa} TL + o(L) & 1D \\ \frac{T}{2\pi} \log(L) + O(1) & 2D \\ \rho_{c}(T) - c_{\kappa} \frac{T}{L} + o(L^{-1}) & 3D \end{cases} \xrightarrow{T} BEC$$

Conclusion

- Chemical potential of order $-\kappa/L^2$ corresponds to zooming at transition
- Gaussian measure μ_0 with covariance $(-\Delta + \kappa)^{-1}$ on $\Omega = C_1$ describes system at macroscopic scale
- Our result for the interacting system in Ω corresponds to a microscopic interaction $L^{-4}w(x/L)$ living at macro scale but small in intensity

Strategy: variational, based on entropy

$$-\log \operatorname{tr} e^{-A} = \min_{\substack{M \ge 0 \\ \operatorname{tr} M = 1}} \left\{ \operatorname{tr}(AM) + \operatorname{tr}(M \log M) \right\} \qquad \rightsquigarrow M_0 = \frac{e^{-A}}{\operatorname{tr}(e^{-A})}$$
$$-\log \frac{\operatorname{tr} e^{-A-B}}{\operatorname{tr} e^{-A}} = \min_{\substack{M \ge 0 \\ \operatorname{tr} M = 1}} \left\{ \underbrace{\mathcal{H}(M, M_0)}_{\operatorname{tr} M(\log M - \log M_0)} + \operatorname{tr}(BM) \right\} \qquad \rightsquigarrow M = \frac{e^{-A-B}}{\operatorname{tr}(e^{-A-B})}$$
quantum relative entropy

$$-\log z_{r} = -\log\left(\int e^{-\mathcal{I}_{ren}(u)}d\mu_{0}(u)\right)$$
$$= \min_{\substack{\nu \text{ probability} \\ measure}} \left\{\underbrace{\mathcal{H}_{cl}(\nu,\mu_{0})}_{\int \left(\frac{d\nu}{d\mu_{0}}\right)\log\left(\frac{d\nu}{d\mu_{0}}\right)d\mu_{0}} + \int \mathcal{I}_{ren}(u)d\nu(u)\right\} \quad \rightsquigarrow \mu$$
$$\operatorname{classical relative entropy}$$

Semi-classical / de Finetti measures

$$\lambda \mathbb{H}_{\lambda} = \lambda \int_{\Omega} a^{\dagger}(x) (-\Delta_x + \kappa) a(x) \, dx + rac{\lambda^2}{2} \iint_{\Omega imes \Omega} a^{\dagger}(x) a^{\dagger}(y) w(x-y) a(x) a(y) \, dx \, dy$$

▶ ∞-dim. semi-classical analysis = quantum Hewitt-Savage/de Finetti A priori bounds on density matrices $\implies \exists \nu$ such that

$$\operatorname{weak}_{\lambda \to 0} \lim \, \lambda^k \mathsf{\Gamma}_{\lambda}^{(k)} = \int |u^{\otimes k}\rangle \langle u^{\otimes k}| \, \boldsymbol{d}\nu(u) \qquad \forall k \geq 1$$

Ammari-Nier 2008, M.L.-Nam-Rougerie '2014

Show that ν solves variational problem for μ . Lower bound relies on:

• Monotonicity of relative entropy + Berezin-Lieb-type inequalities (any $d \ge 1$): $\liminf_{\nu \to \infty} \mathcal{H}(\Gamma_{\lambda}, \Gamma_{0}) \ge \mathcal{H}_{cl}(\nu, \mu_{0})$

M.L.-Nam-Rougerie '2015

Interaction is wlsc

$$\liminf_{\lambda \to 0} \lambda^2 \operatorname{tr}(\mathbb{W}_{\operatorname{ren}} \Gamma_{\lambda}) \geq \int \mathcal{I}_{\operatorname{ren}}(u) \, d\nu(u)$$

In 1D: Fatou since PDM bounded in trace-class and $\mathbb{W}\geq 0$ Very difficult in 2D/3D: \mathbb{W}_{ren} contains divergent terms which are supposed to cancel each other

New correlation inequality

Lower bound on interaction energy requires to control high energy two-particle correlations

Lemma (Controlling variance by first moments)

$$\frac{\operatorname{tr}\left(A^{2}e^{-H}\right)}{\operatorname{tr}(e^{-H})} \leq \frac{2(1+a^{2}+\eta^{2})}{a}\eta \, e^{a\eta}$$

for all a > 0 and all bounded operator A, where

$$\eta := \sup_{\varepsilon \in [-a,a]} \frac{\left| \operatorname{tr} \left(A e^{-H + \varepsilon A} \right) \right|}{\operatorname{tr} \left(e^{-H + \varepsilon A} \right)} + a \left\| \left[[H, A], A \right] \right\| \sqrt{1 + \|A\|^2}$$

- Think of $A \rightsquigarrow A \frac{\operatorname{tr}(Ae^{-H})}{\operatorname{tr}(e^{-H})}$ so that the first term in the sup is small
- We typically apply this to $A = a_k^{\dagger} a_k$ for large momentum k, which gives us access to the 2-PDM