M 328 K 58080 Midterm

1. Show that if a, b, c, d are integers and a divides b and c, then a divides $b^{2}+c d+2 a$.

As $a \mid b$ we have that $b=r a$ for some integer r. Likewise, $c=s a$ for some integer s. So, $b^{2}+c d+2 a=(r a)^{2}+s a d+2 a=\left(r^{2} a+s d+2\right) a$ which shows that $b^{2}+c d+2 a$ is a multiple of a.
2. Show that if a, b are positive integers with $a^{3} \mid b^{2}$ then $a \mid b$.

Write $a=p_{1}^{\alpha_{1}} \cdots p_{m}^{\alpha_{m}}, b=p_{1}^{\beta_{1}} \cdots p_{m}^{\beta_{m}}$, where the p_{i} are distinct primes and the α_{i}, β_{i} are non-negative integers. Then $a^{3}=p_{1}^{3 \alpha_{1}} \cdots p_{m}^{3 \alpha_{m}}, b^{2}=p_{1}^{2 \beta_{1}} \cdots p_{m}^{2 \beta_{m}}$ and, if $a^{3} \mid b^{2}$ we get $3 \alpha_{i} \leq 2 \beta_{i}, i=1, \ldots, m$ by a corollary of unique factorization. Then, as $2 / 3<1$, we get $\alpha_{i} \leq(2 / 3) \beta_{i} \leq \beta_{i}, i=1, \ldots, m$ and, consequently, $a \mid b$.
3. Find inverses of 2 and 3 modulo 101.
$101=2 \cdot 50+1$, so $2 \cdot(-50) \equiv 1 \quad(\bmod 101)$, so $-50 \equiv 51 \quad(\bmod 101)$ is an inverse of 2 modulo 101 .
$101=3 \cdot 33+2,3=2 \cdot 1+1$, so $3 \cdot 34 \equiv 1 \quad(\bmod 101)$, so $34 \quad(\bmod 101)$ is an inverse of 2 modulo 101 .
4. Prove that if an integer n is the square of another integer m (that is, $n=m^{2}$) then the least significant digit of the decimal representation of n is one of $0,1,4,5,6,9$.

Using that if $m \equiv d \quad(\bmod 10)$, then $m^{2} \equiv d^{2} \quad(\bmod 10)$ and that m is congruent modulo 10 to one of $0,1,2,3,4,5,6,7,8,9$, we get that $n=m^{2}$ is congruent modulo 10 to one of $0^{2}=0,1^{2}=1,2^{2}=2,3^{2}=9,4^{2}=16 \equiv 6(\bmod 10), 5^{2}=25 \equiv 5$ $(\bmod 10), 6^{2}=36 \equiv 6(\bmod 10), 7^{2}=49 \equiv 9(\bmod 10), 8^{2}=64 \equiv 4(\bmod 10)$, $9^{2}=81 \equiv 1 \quad(\bmod 10)$. Removing duplicates leaves just $0,1,4,5,6,9$.

