1. Show that a rectangular box of a given volume has minimal surface area when the box is a cube.

Solution: Let the sides of the box be given by x, y, z and the volume be given by V. The surface area of the box is then $A(x, y)=2(x y+y z+x z)=$ $2\left(x y+\frac{V}{x}+\frac{V}{y}\right)$ where we used the restriction $z=\frac{V}{x y}$. The partial derivatives of A are then

$$
\begin{aligned}
& A_{x}(x, y)=2\left(y-\frac{V}{x^{2}}\right) \\
& A_{y}(x, y)=2\left(x-\frac{V}{y^{2}}\right)
\end{aligned}
$$

Setting both partial derivatives to 0 we get

$$
\begin{aligned}
& y=\frac{V}{x^{2}} \Longrightarrow x^{2} y=V \\
& x=\frac{V}{y^{2}} \Longrightarrow y^{2} x=V
\end{aligned}
$$

Dividing one equation by the other we conclude that $\frac{x}{y}=1$ or equivalently $x=y$. Plugging it into the equation $x^{2} y=V$ above we get

$$
x^{3}=V
$$

and hence $x=y=V^{\frac{1}{3}}$. To see if it is a local minimum, maximum or a saddle point, we compute the discriminant. First compute second order partial derivatives of A

$$
\begin{aligned}
A_{x x} & =4\left(\frac{V}{x^{3}}\right) \\
A_{y y} & =4\left(\frac{V}{y^{3}}\right) \\
A_{x y} & =1
\end{aligned}
$$

Plugging in the critical point $\left(x_{0}, y_{0}\right)=\left(V^{\frac{1}{3}}, V^{\frac{1}{3}}\right)$, we get

$$
\begin{aligned}
& A_{x x}\left(x_{0}, y_{0}\right)=4 \\
& A_{y y}\left(x_{0}, y_{0}\right)=4 \\
& A_{x y}\left(x_{0}, y_{0}\right)=1
\end{aligned}
$$

and the discriminant is

$$
D=16-1=15>0
$$

Hence $\left(x_{0}, y_{0}\right)$ is either a local minimum or a local maximum. Since $A_{x x}\left(x_{0}, y_{0}\right)=$ $4>0$, it is a local minimum.
2. Find the point on the surface $y^{2}=9-x z$ which is the closes to the point $(0,0,0)$.

Parametrize the surface by coordinates x, z :

$$
r(x, z)=(x, \sqrt{9-x z}, z)
$$

To be exact, this only parametrizes half of the surface. There is also a sheet parametrized by $(x,-\sqrt{9-x z}, z)$. For a fixed x, z the points on the two sheets are at the same distance from $(0,0,0)$ so we will just focus on one of them. We will find (x, z) that will minimize the distance squared, i,e.

$$
f(x, z)=|r(x, z)|^{2}=x^{2}+9-x z+z^{2}
$$

Taking partial derivatives we get

$$
\begin{gathered}
f_{x}=2 x-z \\
f_{z}=-x+2 z
\end{gathered}
$$

Setting both to 0 we get

$$
\begin{aligned}
& z=2 x \\
& x=2 z
\end{aligned}
$$

The only solution is $x=z=0$. We get a critical point of f at $(0,0)$. Which corresponds to point $(0,3,0)$ on the surface. Taking partial derivatives we get

$$
\begin{aligned}
f_{x x} & =2 \\
f_{z z} & =2 \\
f_{z x} & =-1
\end{aligned}
$$

By the discriminant method, $(0,0)$ is a local minimum. So the points $(0,3,0)$ and $(0,-3,0)$ are the closest to the origin.
3. Find the equation of the plane that passes through the point $(1,2,3)$ and cuts off the smallest volume in the first quadrant.

The equation of a plane P passing through the point $(1,2,3)$ is given by

$$
A(x-1)+B(y-2)+C(z-3)=0
$$

The volume that is being cut off is a triangular pyramid. The volume of a pyramid is $\frac{1}{3} A h$ where A is the area of the base and h is the height. In particular, if x_{0}, y_{0}, z_{0} are the intersections of the plane P with the x, y, z axes, then the volume of the pyramid is $\frac{x_{0} y_{0} z_{0}}{6}$ (notice that you only need to know that the volume is proportional to $x_{0} y_{0} z_{0}$ to solve this problem). In our case, the intersects are

$$
\begin{aligned}
x_{0} & =\frac{A+2 B+3 C}{A} \\
y_{0} & =\frac{A+2 B+3 C}{B} \\
z_{0} & =\frac{A+2 B+3 C}{C}
\end{aligned}
$$

and the volume of the pyramid is given by

$$
6 V=\frac{(A+2 B+3 C)^{3}}{A B C}
$$

Given a plane P, the numbers A, B, C are only defined up to multiplication by a constant which we can now fix to make the computation simpler. Let's fix $A B C=1$ and re-express $A=\frac{1}{B C}$. We get

$$
6 V=\left(\frac{1}{B C}+2 B+3 C\right)^{3}
$$

We are interested in minimizing V. It is equivalent to minimizing $V^{\prime}(B, C)=$ $6 \cdot \sqrt[3]{V}=\left(\frac{1}{B C}+2 B+3 C\right)$. We find

$$
\begin{aligned}
V_{B}^{\prime} & =2-\frac{1}{B^{2} C} \\
V_{C}^{\prime} & =3-\frac{1}{B C^{2}}
\end{aligned}
$$

Setting these to 0 we get

$$
\begin{aligned}
B^{2} C & =\frac{1}{2} \\
C^{2} B & =\frac{1}{3}
\end{aligned}
$$

Dividing one by the other we get

$$
\frac{C}{B}=\frac{2}{3}
$$

and hence

$$
\begin{gathered}
B^{2}\left(\frac{2 B}{3}\right)=\frac{1}{2} \Longrightarrow B=\sqrt[3]{\frac{3}{4}} \\
C=\frac{2}{3} \sqrt[3]{\frac{3}{4}} \\
A=\frac{1}{\frac{2}{3} \sqrt[3]{\frac{3}{4}} \cdot \sqrt[3]{\frac{3}{4}}}=\frac{\sqrt[3]{\frac{3}{4}}}{\frac{2}{3} \cdot \frac{3}{4}}=2 \cdot \sqrt[3]{\frac{3}{4}}
\end{gathered}
$$

We now recall that A, B, C can be multiplied by a constant and still define the same surface. In particular multiplying by $\frac{3}{\sqrt[3]{\frac{3}{4}}}$ we get the plane given by

$$
6(x-1)+3(y-2)+2(z-3)=0
$$

