
Supplement: Bayesian Nonparametric Estimation for Dynamic Treatment

Regimes with Sequential Transition Times

A: Details of MCMC for Fitting DDP-GP Model

Summary of Model

p(yki | xki , F k) = F k(yki | xki )

F k ∼ DDP-GP
{
{µkh}, Ck;αk, {βkh}, σk

}
(1)

F k(y | xk) =
∞∑
h=0

wkhN(y; θkh(x
k), σk). (2)

{θkh(xk)} ∼ GP (µkh(x
k), Ck(xk)). h = 1, 2, ...

µkh(x
k
i ) = xkiβ

k
h.

k = 1, . . . , ntrans. We complete the model construction by assuming βkh ∼ N(βk0 ,Σ
k
0),

(σk)−2
i.i.d.∼ Ga(λ1, λ2) and αk

i.i.d.∼ Ga(λ3, λ4).

Posterior Computation

To evaluate the posterior in a DDP-GP model, we first marginalize (1) analytically with

respect to the random probability measures F k(·|xk). The form is not obvious from the earlier

definition. Temporarily suppress the superscripted transition index k. Consider generating

a sample (Y1,x1), · · · , (Yn,xn) by first sampling from a covariate distribution, p(x), and

then from a conditional transition time distribution, F (·|x). We rewrite (2) as a hierarchical

model with a new latent indicator variable γi for the normal mixture summand index h,

(Yi | γi = h, xi) ∼ N(θh(xi), σ
2) and p(γi = h) = wh, (3)

for i = 1, · · · , n. Let θ̃i(·) = θγi(·) denote a realization of the stochastic process selected

by γi. Next, we re-index the θh(·) such that
∑n

i=1 I(γi = h) ≥ 1 for h = 1, . . . , H. That

is, we let h = 1, . . . , H index the realizations θh(·) that are selected by some of the γi’s, so
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that {θ1, · · · , θH} are the unique values of the n realizations {θ̃i, i = 1, . . . , n}. If clusters

of patients are defined as Sh = {i : θ̃i = θh}, then the γi’s are interpreted as cluster

membership indicators. Posterior simulation makes use of these indicators and the vectors

θh = (θh(x1), . . . , θh(xn)). After marginalization with respect to Fx, we are left with the

marginal model for {γi, θh(xi); i = 1, . . . , n, h = 1, . . . , H}.
For each transition k, we update parameters using finite DP algorithm as follows. Denote

#{i : γki = h} = nkh.

• Update σk

(σk)2 | · ∼ Inverse Gamma(λ1 +
nk

2
, λ2 +

∑H
h=1

∑
γki =h

(yki − θkh(xi))2

2
) (4)

• Update θkh

p(θkh | ·) ∝ p(θkh)
∏
i:γki =h

p(yki | θkh(xki ))

∝ exp{−1

2
(θkh −Xkβkh)′(Ck)−1(θh −Xkβkh)} × exp{−

∑
i:γki =h

(yki − θkh(xi))2

2(σk)2
}

∼ N(((Ck)−1 +
U ′U

(σk)2
I)−1(U ′

ykh
(σk)2

+ (Ck)−1Xkβkh), ((Ck)−1 +
U ′U

(σk)2
Ink×nk)−1),

where ykh = {yki , γki = h}, Ink×nk is an nk × nk identity matrix, Xk is an nk ×Mk

matrix with the covariates xki of the i-th patient in row i. U is a nkh × nk matrix: if

patient i is the j-th element of γki = r, then Uji = 1. All other elements are 0.

• Update βkh

p(βkh | ·) ∝ p(βkh) exp{−1

2
(θkh −Xkβkh)′(Ck)−1(θkh −Xkβkh)}

∼ N(Σk
h[((X

k)′(Ck)−1θkh + Σk
0β

k
0 ],Σk

h),

where Σk
h = ((Xk)′(Ck)−1Xk + (Σk

0)−1)−1.
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• Update wkh

vkh ∼ Beta(1 + nkh, α
k +

∑
j>h

nkj ),

where nkh =
∑nk

i=1 I(γki = h) is the number of observations such that γki = h. Then

wkh = vkh
∏

j>h(1− vkj ).

• Update γki

– If yki is not censored,

Pr(γki = h | ·) ∝ wkh

∫
p(yki | θkh(xi))p(θkh(xki ) | θkh(xk−i))d(θkh(x

k
i )),

where xk−i = {xkj : γkj = h, j 6= i}.

– If yki is censored, Let

pkh(t) =

∫
p(yki | θkh(xi))p(θkh(xki ) | θkh(xk−i))d(θkh(x

k
i )).

Then

Pr(γki = h | ·) ∝
∫ ∞
V k
i

wkhp
k
h(t)dt,

where V k
i is the observed time for patient i in transition k.

• Update αk

Using data augmentation, we first sample an m from beta distribution beta(αk+1, nk).

Then we sample the new αk value from

αk ∼ πGa(λ3 +H,λ4 − log(m)) + (1− π)Ga(λ3 +H − 1, λ4 − log(m)),

where π
1−π = λ3+H−1

nk(λ4−log(m))
.
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B: Determining Prior Hyperparameters

As priors for βkh in (1) we assume βkh ∼ N(βk0 ,Σ
k
0) for each transition k, h = 1, 2, . . . . For

σk we assume (σk)−2
i.i.d.∼ Ga(λ1, λ2). And, finally, αk

i.i.d.∼ Ga(λ3, λ4).

To apply the DDP-GP model, one must first determine numerical values for the fixed

hyperparameters {βk0 , Σk
0, k = 1, 2, ...} and λ = (λ1, λ2, λ3, λ4). This is a critical step. These

numerical hyperparameter values must facilitate posterior computation, and they should not

introduce inappropriate information into the prior that would invalidate posterior inferences.

With this in mind, the hyperparameters (βk0 ,Σ
k
0) for the kth transition time covariate effect

distribution may be obtained via empirical Bayes by doing a preliminary fits of a lognormal

distribution Y k = log(T k) ∼ N(xkβk0 , σ
k
0) for each transition k. Similarly, we assume a

diagonal matrix for Σk
0 with the diagonal values also obtained from the preliminary fit of the

lognormal distribution. Once an empirical estimate of σk is obtained, one can tune (λ1, λ2)

so that the prior mean of σk matches the empirical estimate and the variance equals 1 or a

suitably large value to ensure a vague prior. Finally, information about αk typically is not

available in practice. We use λ3 = λ4 = 1.

This approach works in practice because the parameter βk0 specifies the prior mean for

the mean function of the GP prior, which in turn formalizes the regression of T k on the

covariates xk, including treatment selection. The imputed treatment effects hinge on the

predictive distribution under that regression. Excessive prior shrinkage could smooth away

the treatment effect that is the main focus. The use of an empirical Bayes type prior in

the present setting is similar to empirical Bayes priors in hierarchical models. This type

of empirical Bayes approach for hyperparameter selection is commonly used when a full

prior elicitation is either not possible or is impractical. Inference is not sensitive to values

of the hyperparameters λ that determine the priors of σk and αk for two reasons. First,

the standard deviation σk is the scale of the kernel that is used to smooth the discrete

random probability measure generated by the DDP prior. It is important for reporting a

smooth fit, that is for display, but it is not critical for the imputed fits in our regression

setting. Assuming some regularity of the posterior mean function, smoothing adds only

minor corrections. Second, the total mass parameter αk determines the number of unique

clusters formed in the underlying Polya urn. However, because most clusters are small

changing the prior of αk does not significantly change the posterior predictive values that
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are the basis for the proposed inference.

The conjugacy of the implied multivariate normal on {θkh(xki ), i = 0, . . . , n} and the

normal kernel in (2) greatly simplify computations, since any Markov chain Monte Carlo

(MCMC) scheme for DP mixture models can be used. MacEachern and Müller (1998) and

Neal (2000) described specific algorithms to implement posterior MCMC simulation in DPM

models. Ishwaran and James (2001) developed alternative computational algorithms based

on finite DPs, which truncated (2) after a finite number of terms.

C: Survival Time Regression Simulation

This simulation was designed to study the DDP-GP regression model by comparing inference

for a survival function with the simulation truth. In this study, we did not evaluate a regime

effect, but rather focused on inference for the survival curve.

For each subject, we generated T = survival time, the covariates x1 = tumor size

(0=small, 1=large) and x2 = body weight, and x3 = a biomarker (0=absent, 1=present).

We assumed that small and large tumor sizes each had probability .50. Body weights were

computed by sampling from a uniform distribution, Unif(80, 150), with the covariate x2

defined by shifting and scaling to obtain mean 0 and variance 1. The biomarker was asso-

ciated with tumor size, as follows. Patients in the large tumor size group were biomarker

negative with probability 0.7 and biomarker positive with probability 0.3. Patients with

small tumor size were biomarker negative with probability 0.3 and biomarker positive with

probability 0.7. Let Y ∼ LN(m, s) denote a lognormal random variable Y = log T for

T ∼ N(m, s). By a slight abuse of notation, we also use LN(m, s) to denote the lognormal

p.d.f. Let xi = (1, xi,1, xi,2, xi,3) denote the covariates for patient i, here we include 1 in the

covariate to indicate the intercept. We simulated each sample Y1, · · · , Yn of n observations

from a mixture of lognormal distributions, Yi|xi ∼ 0.4 LN(xiβ1, σ
2) + 0.6 LN(xiβ2, σ

2),

where the true covariate parameters of the mixture components were β1 = (1, 2,−2, 1)′ and

β2 = (2,−1, 3,−3)′, with σ2 = 0.4. For comparison, we also fit an AFT regression model,

assuming

Yi = log(Ti) = x′iβ + σεi, i = 1, . . . , n

with εi following an extreme value distribution, so that Ti follows a Weibull distribution.
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In this simulation, we considered four scenarios, with n = 50, 100, or 200 observations

without censoring or n = 200 with 23% censoring. For each scenario, N = 1, 000 trials were

simulated. For each simulated data set we fit a DDP-GP survival regression model F (Yi | xi).
For simulation j, let S(t | x) = p(Tn+1 ≥ t | xn+1,j = x, data) denote the posterior expected

survival function for a future patient with covariate x. Using the empirical distribution
1
n

∑n
i=1 δxij

to marginalize w.r.t. xn+1,j and averaging across simulations, we get

S(t) =
1

N

N∑
j=1

1

n

n∑
i=1

S(t | xij).

Figure S1 compares S(·) under the DDP-GP model with the simulation truth

S0(t) =
1

N

N∑
j=1

1

n

n∑
i=1

S0(t | xij),

and maximum likelihood estimates (MLE) under Weibull AFT, Lognormal AFT, and Ex-

ponential AFT models. In each scenario, the true curve is given as a solid black solid line,

the MLE of the survival functions under the AFT regression model assuming Weibull distri-

bution, Lognormal distribution and Exponential distribution as green, blue, magenta solid

lines respectively, and the posterior mean survival function under the DDP-GP model as a

solid red line with point-wise 90% credible bands as two dotted red lines.

In all four scenarios, the DDP-GP model based estimate reliably recovered the shape of

the true survival function and avoided the excessive bias seen with the Weibull, lognormal and

exponential MLE. As expected, the three scenarios without censoring show that increasing

sample size gives more accurate estimation. With 23% censoring, the DDP-GP estimate

becomes less accurate, but it still is much closer to the simulation truth than the AFT

regression models with Weibull, lognormal and exponential distributions.

D: Computing Mean Survival Time

The risk sets of the seven transition time in the leukemia trial are defined as follows. Let

G0 = {1, . . . , n} denote the initial risk set at the start of induction chemotherapy, and

G(0,r) = {i : s1i = r} for r = D,C,R, so G0 = G(0,D) ∪ G(0,C) ∪ G(0,R). Similarly, G(C,P ) =
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Figure S1: Simulation 1. True mean survival functions (black color) and estimated mean survival

functions under the DDP-GP model (red color) for sample sizes n = 50, 100, 200 and n = 200

with 23% censoring for 1,000 simulations. For comparisons, we also show the MLE under an

AFT regression with Weibull distribution (green color), Lognormal distribution (blue color) and

Exponential distribution (magenta) . In all cases, the point-wise 90% credible bands are also

displayed as the region between two dotted red lines.

{i : s1i = C, s2i = P} is the later risk set for T (P,D).

To record right censoring, let Ui denote the time from the start of induction to last
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followup for patient i. We assume that Ui is conditionally independent of the transition

times given prior transition times and other covariates. Censoring of event times occurs by

competing risk and/or loss to follow up. For a patient i in the risk set for event time T ki ,

let δki = 1 if a patient i is not censored and 0 if patient i is right censored. For example,

δ
(0,D)
i = 1 for i ∈ G0 if T

(0,D)
i = min(Ui, T

(0,k)
i , k = D,C,R). Similarly, δ

(R,D)
i = 1 for

i ∈ G(0,R) if T
(0,R)
i +T

(R,D)
i < Ui and δ

(P,D)
i = 1 for i ∈ G(C,P ) if T

(0,C)
i +T

(C,P )
i +T

(P,D)
i < Ui.

Let Vx,i denote the observed time for patient i in risk set Gx, as follows. For i ∈ G0

let V1,i = min(T
(0,D)
i , T

(0,R)
i , T

(0,C)
i , Ui) denote the observed time for the stage 1 event or

censoring. For i ∈ G(0,C) let VCi = min(T
(C,D)
i , T

(C,P )
i , Ui− T (0,C)

i ) denote the observed event

time for the competing risks D and P and loss to followup. Similarly, for i ∈ G(0,R), let VRi =

min(T
(R,D)
i , Ui − T (R,D)

i ), and for i ∈ G(C,P ) let V(C,P ),i = min(T
(P,D)
i , Ui − T (0,C)

i − T (C,P )
i ).

The joint likelihood function is the product L = L1L2L3L4. The first factor L1 corre-

sponds to response to induction therapy,

L1 =
∏
i∈G0

∏
k∈{D,R,C}

f (0,k)(V1,i | x(0,k)
i )δ

(0,k)
i S(0,k)(V1,i | x(0,k)

i )1−δ
(0,k)
i . (5)

where Sk = 1− F k. The second factor L2 corresponds to patients i ∈ G(0,R) who experience

resistance to induction and receive salvage Z2,1,

L2 =
∏

i∈G(0,R)

f (R,D)(VRi | x(R,D)
i )δ

(R,D)
i S(R,D)(VRi | x(R,D)

i )1−δ
(R,D)
i . (6)

The third factor L3 is the likelihood contribution from patients achieving CR,

L3 =
∏

i∈G(0,C)

∏
k=(C,D),(C,P )

fk(VCi | xki )δ
k
i Sk(VCi | xki )1−δ

k
i . (7)

The fourth factor L4 is the contribution from patients who experience tumor progression

after CR

L4 =
∏

i∈G(C,P )

f (P,D)(VCP,i | x(P,D)
i )δ

(P,D)
i S(P,D)(VCP,i | x(P,D)

i )1−δ
(P,D)
i . (8)
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The mean survival time of a patient treated with regime Z = (Z1, Z2,1, Z2,2) is

η(Z) =

∫ [
p(s1 = D | x0, Z1)η(0,D)(x0, Z1)

]
dp̂(x0)

+

∫ {
p(s1 = R | x0, Z1)

[
ηR(x0, Z1) +

∫
η(R,D)(x0, Z1, Z2,1, T (0,R))dµ(T (0,R))

]}
dp̂(x0)

+

∫
p(s1 = C | x0, Z1)

[
ηC(x0, Z1) +

∫ [
p(s2 = D | s1 = C,x0, Z1, T (0,C))η(C,D)(x0, Z1, TC)

+ p(s2 = P | s1 = C,x0, Z1, T (0,C))[η(C,P )(x0, Z1, T (0,C))

+

∫
η(P,D)(x0, Z1, Z2,2T (0,C), T (C,P ))dµ(T (C,P ))]dµ(T (0,C))

]
dp̂(x0). (9)

We compute the IPTW estimates for overall mean survival with regime Z as

IPTW (Z) =
n∑
i=1

wi(Z)Ti /
n∑
i=1

wi(Z), (10)

where

wi(Z) =
I(Z = Zi)δi

K̂(Ui)

[
I(s1i = D) + I(s1i = R)Ii(Z

2,1)/P̂r(Z2,1 | s1i = R,Z1,x0
i , T

(0,R)
i )

+I(s1i = C, s2i = D)

+I(s1i = C, s2i = P )Ii(Z
2,2)/P̂r(Z2,2 | s1i = C, s2i = P,Z1,x0

i , T
(0,C)
i , T

(C,P )
i )

]
.

(11)

In (11), K̂ is the Kaplan-Meier estimator of the censoring survival distribution K(u) =

P (U ≥ t) at time t. Ii(Z) is is an indictor of treatment Z and 0 otherwise, and P̂r(Z2,1 |
s1i = C,Z1,x0

i , T
(0,R)
i ) is the probability of receiving salvage treatment Z2,1 estimated using

logistic regression, and similarly for P̂r(Z2,2 | s1i = C, s2i = P,Z1,x0
i , T

(0,C)
i , T

(C,P )
i ). The

above estimator has been shown to be consistent under suitable assumptions (Wahed and

Thall, 2013; Scharfstein et al., 1999).
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E: Survival Regression for T (C,P ) and T (P,D)

Here we summarize results for the survival regression for T (C,P ). Among the n = 210

patients, 102 (48.6%) achieved C, with C rates of 37%, 48%, 53% and 56% in the FAI, FAI

plus ATRA, FAI plus GCSF and FAI plus GCSF plus ATRA arms, respectively. Of the 102

patients who achieved CR, 93 experienced disease progression before death or being lost to

follow-up. Among these 93 relapsed patients, 53 received salvage treatment with HDAC.

For a hypothetical future patient at age 61 and poor cytogenetic abnormality, Figure S2

summarizes survival regression functions for each of the four induction therapies, with solid

lines representing T (0,C) = 20 and dashed lines representing T (0,C) = 30. The four dashed

lines are below the four corresponding solid lines, indicating that T (0,C) was associated with

T (C,P ). This observation coincides with the well-known phenomenon in chemotherapy for

AML or MDS that, regardless of induction therapy, the longer it takes to achieve C, the

shorter the period that the patient remains in C.

Similarly, we summarize results for the survival regression for T (P,D). For a patient with

poor cytogenetic abnormality, Figure S3 shows the posterior predicted survival functions

under different combinations of induction therapy and age. Panels (a) and (c) show the

survival functions of a patient assigned salvage treatment HDAC with age 46 or 76, while

panels (b) and (d) plot the corresponding survival functions for the patient assigned non

HDAC as salvage. Four different colors represent the four induction therapies. Figure S3

shows that residual time to D after disease progression following C was associated with both

age and salvage therapy. Older patients are more likely to have shorter residual life once

their disease progressed, and patients given HDAC as salvage die more quickly than patients

given non HDAC salvage.
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Figure S3: AML-MDS trial data in transition (P,D): Panels (a) and (c) show the posterior es-

timated survival functions of patient at age 46 and 76 with poor cytogenetic abnormality as-

signed to salvage treatment HDAC for four induction therapies respectively. Panels (b) and (d)

show the posterior estimated survival functions of patient at age 46 and 76 with poor cytogenetic

abnormality assigned to salvage treatment non HDAC for four induction therapies respectively.

Black, red, green and blue curves represent induction treatments FAI, FAI+ATRA, FAI+GCSF

and FAI+ATRA+GCSF, respectively.
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