1. Find a power series representation for the function $f(x)=\arctan (x)$.

Hint: $\int \frac{1}{1+x^{2}} d x=\arctan (x)+C$.

Solution.

$$
\begin{aligned}
\frac{1}{1-x} & =\sum_{n=0}^{\infty} x^{n} \\
\frac{1}{1-\left(-x^{2}\right)} & =\sum_{n=0}^{\infty}\left(-x^{2}\right)^{n} \\
& =\sum_{n=0}^{\infty}(-1)^{n} x^{2 n}
\end{aligned}
$$

Integrate term by term:

$$
\int \frac{1}{1+x^{2}} d x=\int \sum_{n=0}^{\infty}(-1)^{n} x^{2 n} d x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}+C
$$

Important note: the above is just general anti-derivative of $\frac{1}{1+x^{2}}$. To find $\arctan (x)$, we need to determine the constant C.

Plug in $x=0: \sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}+C=0+C=C, \arctan (0)=0$, so $C=0$. The conclusion is

$$
\arctan (x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}
$$

2. Find a power series representation for the function $f(x)=\ln (6-x)$.

Hint: You can approach it in two ways:
(1) Use the power series expansion for $\frac{1}{6-x}$ and integrate term by term. Do not forget the ' +C '!
(2)OR: use the Taylor Series for $\ln (1+x)$ at $0: \ln (1+x)=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{n}}{n}$.

Solution (1).

$$
\frac{1}{6-x}=\frac{1}{6\left(1-\frac{x}{6}\right)}=\frac{1}{6} \sum_{n=0}^{\infty}\left(\frac{x}{6}\right)^{n}=\frac{1}{6} \sum_{n=0}^{\infty} \frac{1}{6^{n}} x^{n}
$$

Notice that $\frac{\mathrm{d}}{\mathrm{dx}}(\ln (\mathbf{6}-\mathbf{x}))=\frac{1}{6-\mathbf{x}} \cdot(-\mathbf{1})$, then $\ln (6-x)=\int-\frac{1}{6-x} d x+C$. we integrate the series term by term:

$$
\int-\frac{1}{6-x} d x=\int-\frac{1}{6} \sum_{n=0}^{\infty} \frac{1}{6^{n}} x^{n} d x=-\frac{1}{6} \sum_{n=0}^{\infty} \frac{1}{6^{n}} \frac{x^{n+1}}{n+1}+C
$$

To determine the constant C, we plug in $x=0: \ln (6-x)=\ln 6,-\frac{1}{6} \sum_{n=0}^{\infty} \frac{1}{6^{n}} \frac{0^{n+1}}{n+1}+C=C$, so $C=\ln 6$,

$$
\begin{aligned}
\ln (6-x) & =-\frac{1}{6} \sum_{n=0}^{\infty} \frac{1}{6^{n}} \frac{x^{n+1}}{n+1}+\ln 6 \\
& =\ln 6-\sum_{n=0}^{\infty} \frac{1}{6^{n+1}} \frac{x^{n+1}}{n+1} \\
& =\ln 6-\sum_{n=1}^{\infty} \frac{1}{6^{n}} \frac{x^{n}}{n} \\
& =\ln 6-\frac{1}{6} x-\frac{1}{6^{2} \cdot 2} x^{2}-\frac{1}{6^{3} \cdot 3} x^{3}-\cdots
\end{aligned}
$$

Solution (2).

$$
\begin{aligned}
\ln (6-x) & =\ln \left(6\left(1-\frac{x}{6}\right)\right) \\
& =\ln 6+\ln \left(1+\left(-\frac{x}{6}\right)\right) \\
& =\ln 6+\sum_{n=1}^{\infty}(-1)^{n-1} \frac{1}{n}\left(\frac{-x}{6}\right)^{n} \\
& =\ln 6+\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \frac{(-1)^{n}}{6^{n}} x^{n} \\
& =\ln 6+\sum_{n=1}^{\infty} \frac{(-1)^{2 n-1}}{n 6^{n}} x^{n} \\
& =\ln 6+\sum_{n=1}^{\infty} \frac{(-1)}{n 6^{n}} x^{n} \\
& =\ln 6-\frac{1}{6} x-\frac{1}{6^{2} \cdot 2} x^{2}-\frac{1}{6^{3} \cdot 3} x^{3}-\cdots
\end{aligned}
$$

