1. (5 pts) Evaluate the integral

$$
I=\int_{0}^{1} \frac{3}{\sqrt{4-x^{2}}} d x
$$

Hint: $\left(\sin ^{-1} x\right)^{\prime}=\frac{1}{\sqrt{1-x^{2}}}$.

Solution.

$$
\sqrt{4-x^{2}}=\sqrt{4\left(1-\frac{x^{2}}{4}\right)}=\sqrt{4} \cdot \sqrt{1-\left(\frac{x}{2}\right)^{2}}=2 \sqrt{1-\left(\frac{x}{2}\right)^{2}}
$$

So we set $u=\frac{x}{2}, x=2 u, d x=2 d u$. The limits of integration of $u=\frac{x}{2}$ is 0 and $\frac{1}{2}$.

$$
\begin{aligned}
I & =\int_{0}^{1} \frac{3}{\sqrt{4-x^{2}}} d x \\
& =\int_{0}^{1} \frac{3}{2 \sqrt{1-\left(\frac{x}{2}\right)^{2}}} d x \\
& =\int_{0}^{\frac{1}{2}} \frac{3}{2 \sqrt{1-u^{2}}} 2 d u \\
& =3 \int_{0}^{\frac{1}{2}} \frac{1}{\sqrt{1-u^{2}}} d u \\
& =\left.3 \arcsin u\right|_{u=0} ^{u=\frac{1}{2}}
\end{aligned}
$$

Recall that

$$
\begin{array}{lll}
\theta=\arcsin (x) & \text { means } & \sin \theta=x, \theta \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] . \text { Domain of } x \text { is }[-1,1] . \\
\theta=\arccos (x) & \text { means } & \cos \theta=x, \theta \in[0, \pi] . \text { Domain of } x \text { is }[-1,1] . \\
\theta=\arctan (x) & \text { means } & \tan \theta=x, \theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) . \text { Domain of } x \text { is }(-\infty, \infty) .
\end{array}
$$

You can use a unit circle to find the \arcsin values: $\arcsin (0)=0, \arcsin \left(\frac{1}{2}\right)=$ $\frac{\pi}{6}$.

$$
\begin{aligned}
I & =3 \arcsin \left(\frac{1}{2}\right)-3 \arcsin (0) \\
& =3 \frac{\pi}{6}-0 \\
& =\frac{\pi}{2}
\end{aligned}
$$

(Problem 2 on the back)
2. (5 pts) Find the area of the region bounded by the curves $y=\sqrt{x-1}$ and $x-y=1$.

Solution.

$x-y=1$ can also be expressed as $y=x-1$. Graph the functions (see the above figure), find the intersections by

$$
\begin{aligned}
\sqrt{x-1} & =x-1 \\
x-1 & =(x-1)^{2} \\
x-1 & =x^{2}-2 x+1 \\
0 & =x^{2}-3 x+2 \\
0 & =(x-1)(x-2) \\
x=1 & \text { or } \quad x=2
\end{aligned}
$$

So the graphs intersect at $(1,0)$ and $(2,1)$. Use integral to calculate the area:

$$
\begin{aligned}
A & =\int_{1}^{2} \sqrt{x-1}-(x-1) d x \\
& =\int_{0}^{1} \sqrt{u}-u d u \text { by } u=x-1 \\
& =\frac{u^{\frac{3}{2}}}{\left(\frac{3}{2}\right)}-\left.\frac{u^{2}}{2}\right|_{u=0} ^{u=1} \\
& =\frac{2 u^{\frac{3}{2}}}{3}-\left.\frac{u^{2}}{2}\right|_{u=0} ^{u=1}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\frac{2}{3}-\frac{1}{2}\right)-(0-0) \\
& =\frac{1}{6}
\end{aligned}
$$

You can also write $y=\sqrt{x-1}$ as $x=y^{2}+1$, write $x-y=1$ as $x=y+1$, solve for the intersection w.r.t. y :

$$
\begin{aligned}
& y^{2}+1=y+1 \\
& y^{2}-y=0 \\
& y=0 \text { or } y=1 \\
& A= \int_{0}^{1}(y+1)-\left(y^{2}+1\right) d y \\
&= \int_{0}^{1} y-y^{2} d y \\
&= \frac{y^{2}}{2}-\left.\frac{y^{3}}{3}\right|_{y=0} ^{y=1} \\
&=\left(\frac{1}{2}-\frac{1}{3}\right)-(0-0) \\
&= \frac{1}{6}
\end{aligned}
$$

