1. (5 pts) The shaded region in the figure below is bounded by the y-axis and the graphs of

$$
y=2-\sqrt{x}, \quad y=1
$$

Find the volume of the solid obtained by rotating this above region about the \mathbf{x}-axis.

Solution. First solve for the intersection: $2-\sqrt{x}=1, x=1$. The cross-sections are washer-typed.

$$
\begin{aligned}
\text { Volume } & =\int_{0}^{1} \pi\left((2-\sqrt{x})^{2}-1^{2}\right) d x \\
& =\pi \int_{0}^{1}(4+x-4 \sqrt{x}-1) d x \\
& =\pi \int_{0}^{1}(3+x-4 \sqrt{x}) d x \\
& =\left.\pi\left[3 x+\frac{x^{2}}{2}-4 \frac{x^{\frac{3}{2}}\left(\frac{3}{2}\right)}{}\right]\right|_{0} ^{1} \\
& =\pi\left(3+\frac{1}{2}-\frac{8}{3}-0\right) \\
& =\frac{5}{6} \pi
\end{aligned}
$$

2. (5 pts) Evaluate the integral

$$
I=\int_{0}^{1} x^{2} e^{x} d x
$$

Solution.

$$
\begin{aligned}
I & =\int_{0}^{1} x^{2} e^{x} d x \\
& =\left.x^{2} e^{x}\right|_{0} ^{1}-\int_{0}^{1} 2 x e^{x} d x \\
& =(e-0)-2 \int_{0}^{1} x e^{x} d x \\
& =e-2\left[\left.x e^{x}\right|_{0} ^{1}-\int_{0}^{1} e^{x} d x\right] \\
& =e-2\left(e-\left.e^{x}\right|_{0} ^{1}\right) \\
& =e-2(e-(e-1)) \\
& =e-2 \cdot 1 \\
& =e-2
\end{aligned}
$$

