1. (5 pts) Find the slope in the \mathbf{y}-direction at the point $P(2,3, f(2,3))$ on the graph of f when

$$
f(x, y)=\arctan \left(\frac{x}{y}\right)
$$

Solution.

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{1}{1+\left(\frac{x}{y}\right)^{2}} \cdot \frac{\partial}{\partial y}\left(\frac{x}{y}\right) \\
& =\frac{1}{1+\left(\frac{x}{y}\right)^{2}} \cdot\left(-\frac{x}{y^{2}}\right) \\
& =-\frac{x}{y^{2}+x^{2}}
\end{aligned}
$$

Plug in $x=2, y=3$:

$$
\frac{\partial f}{\partial y}(2,3)\left(\text { or write as } f_{y}(2,3)\right)=-\frac{2}{3^{2}+2^{2}}=-\frac{2}{13}
$$

2. (5 pts) Find the volume of the solid lying under the surface

$$
z=\frac{y}{x\left(x^{2}+1\right)}
$$

and above the rectange

$$
D=\{(x, y): 1 \leq x \leq 2,0 \leq y \leq 2\}
$$

Solution 1.

$$
\begin{aligned}
\iint_{D} \frac{y}{x\left(x^{2}+1\right)} d A & =\int_{1}^{2} \int_{0}^{2} \frac{y}{x\left(x^{2}+1\right)} d y d x \\
& =\int_{1}^{2}\left[\left.\frac{1}{x\left(x^{2}+1\right)} \cdot \frac{y^{2}}{2}\right|_{y=0} ^{y=2} d y\right] d x \\
& =\int_{1}^{2} \frac{2}{x\left(x^{2}+1\right)} d x
\end{aligned}
$$

Use partial fraction decomposition:

$$
\frac{2}{x\left(x^{2}+1\right)}=\frac{A}{x}+\frac{B x+C}{x^{2}+1}
$$

And solve for A, B, C :

$$
\begin{aligned}
& 2=A\left(x^{2}+1\right)+(B x+C) x \\
& 2=(A+B) x^{2}+C x+A
\end{aligned}
$$

Then $A=2, B=-2, C=0$ can make the above equation hold. (Or: plug in $x=0,1,-1$.)
After partial fraction decomposition, you can check whether it is correct by the common denominator:

$$
\frac{A}{x}+\frac{B x+C}{x^{2}+1}=\frac{2}{x}+\frac{(-2) x+0}{x^{2}+1}=\frac{2\left(x^{2}+1\right)-2 x \cdot x}{x\left(x^{2}+1\right)}=\frac{2 x^{2}+2-2 x^{2}}{x\left(x^{2}+1\right)}=\frac{2}{x\left(x^{2}+1\right)}
$$

So our decomposition is correct.

$$
\begin{aligned}
\iint_{D} \frac{y}{x\left(x^{2}+1\right)} d A= & \int_{1}^{2} \frac{2}{x\left(x^{2}+1\right)} d x \\
= & \int_{1}^{2} \frac{2}{x}-\frac{2 x}{x^{2}+1} d x \\
= & \left.2 \ln |x|\right|_{1} ^{2}-\int_{1}^{2} \frac{2 x}{x^{2}+1} d x \\
& \left(\text { do substitution } u=x^{2} \text { or } x^{2}+1\right) \\
= & 2 \ln |x|-\left.\ln \left|x^{2}+1\right|\right|_{1} ^{2} \\
= & 2 \ln 2-\ln 5-(2 \ln 1-\ln 2) \\
= & 3 \ln 2-\ln 5 \\
= & \ln \left(\frac{8}{5}\right)
\end{aligned}
$$

You can also integrate x first, which will give you the same answer:

$$
\begin{aligned}
\iint_{D} \frac{y}{x\left(x^{2}+1\right)} d A & =\int_{0}^{2} \int_{1}^{2} \frac{y}{x\left(x^{2}+1\right)} d x d y \\
& =\int_{1}^{2} y\left[\int_{1}^{2} \frac{1}{x\left(x^{2}+1\right)} d x\right] d y \\
& =\int_{1}^{2} y\left[\left.\left(\ln |x|-\frac{1}{2} \ln \left|x^{2}+1\right|\right)\right|_{x=1} ^{x=2}\right] d y \\
& =\int_{1}^{2} y\left[\frac{3}{2} \ln 2-\frac{1}{2} \ln 5\right] d y \\
& =2\left(\frac{3}{2} \ln 2-\frac{1}{2} \ln 5\right) \\
& =3 \ln 2-\ln 5
\end{aligned}
$$

