1. (5 pts) The graph of

$$
f(x, y)=5 x y
$$

over the bounded region R in the first quadrant enclosed by the x, y-axes and

$$
y=\sqrt{4-x^{2}}
$$

is the surface below. Find the volume of the solid under this graph over the region R.

Solution. The volume of the solid under the graph of f is given by the double integral

$$
\iint_{R} f(x, y) d A
$$

which in turn can be written as the repeated integral

$$
\begin{aligned}
& \int_{0}^{2} \int_{0}^{\sqrt{4-x^{2}}} f(x, y) d y d x \\
= & \int_{0}^{2} \int_{0}^{\sqrt{4-x^{2}}} 5 x y d y d x \\
= & \int_{0}^{2}\left(\left.5 x \cdot \frac{y^{2}}{2}\right|_{y=0} ^{y=\sqrt{4-x^{2}}}\right) d x \\
= & \int_{0}^{2} 5 x \cdot \frac{\left(4-x^{2}\right)}{2} d x \\
= & \int_{0}^{2} 10 x-\frac{5 x^{3}}{2} d x \\
= & 5 x^{2}-\left.\frac{5}{2} \frac{x^{4}}{4}\right|_{0} ^{2} \\
= & \left(20-\frac{5}{2} \frac{16}{4}\right)-(0-0) \\
= & 10
\end{aligned}
$$

2. (5 pts) Determine if the sequence $\left\{a_{n}\right\}$ converges, when

$$
a_{n}=\cos \left(\frac{6 \pi n^{2}\left(n+(-1)^{n}\right)}{18 n^{3}+7 n^{2}+4}\right)
$$

and if it does, find its limit.

Solution.

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{6 \pi n^{2}\left(n+(-1)^{n}\right)}{18 n^{3}+7 n^{2}+4} \\
= & \lim _{n \rightarrow \infty} \frac{\left.6 \pi n^{3}+6 \pi n^{2}(-1)^{n}\right)}{18 n^{3}+7 n^{2}+4} \\
= & \lim _{n \rightarrow \infty} \frac{6 \pi+6 \pi \frac{1}{n}(-1)^{n}}{18+7 \frac{1}{n}+4 \frac{1}{n^{3}}}\left(\text { devide by the highest power } n^{3}\right) \\
= & \lim _{n \rightarrow \infty} \frac{6 \pi+6 \pi \cdot 0}{18+7 \cdot 0+4 \cdot 0} \\
= & \lim _{n \rightarrow \infty} \frac{6 \pi}{18} \\
= & \frac{\pi}{3}
\end{aligned}
$$

Consequently, since $\cos x$ is continuous as a function of x, the sequence $\left\{a_{n}\right\}$ converges and has

$$
\lim _{n \rightarrow \infty} \cos \left(\frac{6 \pi n^{2}\left(n+(-1)^{n}\right)}{18 n^{3}+7 n^{2}+4}\right)=\cos \left(\frac{\pi}{3}\right)=\frac{1}{2}
$$

