1. (1) (2 points) Which x can make the power series $\sum_{n=0}^{\infty} \frac{(x-2)^{n}}{3^{n-1}}$ converge? select all that applies.
A. $x=-1$
B. $x=1$
C. $x=2$
D. $x=5$
E. $x=7$
(2) (2 points) For any number x which can make the series converge, find $\sum_{n=0}^{\infty} \frac{(x-2)^{n}}{3^{n-1}}$. (Express the sum in terms of x.)

Solution.

(1) Solution 1. Use the Ratio Test:

$$
L=\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\lim _{n \rightarrow \infty} \frac{\left|\frac{(x-2)^{n+1}}{3^{n}}\right|}{\left|\frac{(x-2)^{n}}{3^{n-1}}\right|}=\lim _{n \rightarrow \infty} \frac{|x-2|^{n+1}}{|x-2|^{n}} \cdot \frac{3^{n-1}}{3^{n}}=\left|\frac{x-2}{3}\right|
$$

By the ratio test, the series absolutely converges when $L<1$. Solving $\left|\frac{x-2}{3}\right|<1$ we get

$$
\begin{aligned}
&|x-2|< \\
& x-2<3 \text { and } \\
& x-2>-3 \\
& x<5 \text { and }
\end{aligned}
$$

i.e.

$$
-1<x<5
$$

Also, plug in the endpoint $x=-1$: $\sum_{n=0}^{\infty} \frac{(x-2)^{n}}{3^{n-1}}=\sum_{n=0}^{\infty} \frac{(-3)^{n}}{3^{n-1}}=\sum_{n=0}^{\infty}(-1)(-1)^{n}$ diverges.
Plug in the endpoint $x=5: \sum_{n=0}^{\infty} \frac{(x-2)^{n}}{3^{n-1}}=\sum_{n=0}^{\infty} \frac{3^{n}}{3^{n-1}}=\sum_{n=0}^{\infty} \frac{1}{3}$ diverges. Therefore, the series converges if and only if

$$
-1<x<5
$$

Solution 2. Use gemetric series. The first serveral terms of the geometric series are:

$$
\frac{(x-2)^{0}}{3^{-1}}, \frac{(x-2)}{3^{0}}, \frac{(x-2)^{2}}{3^{1}}, \frac{(x-2)^{3}}{3^{2}} \cdots
$$

The ratio of the geometric series is $\frac{(x-2)}{3}$. Since Geometric Series converges if and only if the absolute value of ratio is less than 1 , we require

$$
\left|\frac{(x-2)}{3}\right|<1
$$

i.e.

$$
\begin{aligned}
|(x-2)| & <3 \\
x-2<3 & \text { and } x-2>-3 \\
x<5 & \text { and } x>-1
\end{aligned}
$$

i.e.

$$
1<x<5
$$

Therefore, in (1), B, C are correct.
(2) The sum of geomeric series is

$$
\begin{aligned}
\text { first term } \times \frac{1}{\mathbf{1 - R a t i o}} & =\frac{(x-2)^{0}}{3^{-1}} \cdot \frac{1}{1-\frac{(x-2)}{3}} \\
& =\frac{1}{\left(\frac{1}{3}\right)} \cdot \frac{3}{3-(x-2)} \\
& =\frac{9}{5-x}
\end{aligned}
$$

2. (3 points) Determine whether the following series

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{4 n^{2}+1}{5^{n}}
$$

is absolutely convergent, conditionally convergent, or divergent.
Solution. First check each term $a_{n} \rightarrow 0$ as $n \rightarrow \infty$, since 5^{n} is much larger than $4 n^{2}+1$.
To test absolute convergence, we use the Ratio test, for then

$$
\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\lim _{n \rightarrow \infty} \frac{\frac{4(n+1)^{2}+1}{5^{+1}}}{\frac{4 n^{2}+1}{5^{n}}}=\lim _{n \rightarrow \infty} \frac{4(n+1)^{2}+1}{4 n^{2}+1} \cdot \frac{1}{5}=1 \cdot \frac{1}{5}=\frac{1}{5}<1
$$

Consequently, by the Ratio test, the given series is absolutely convergent.
3. (3 points) Determine whether the following series

$$
\sum_{k=2}^{\infty}(-1)^{k} \frac{\ln (k)}{\sqrt{k}}
$$

is absolutely convergent, conditionally convergent, or divergent.

Solution.

The given series is an alternating series

$$
\sum_{k=2}^{\infty}(-1)^{k} f(k) \text { with } f(x)=\frac{\ln (x)}{\sqrt{x}}
$$

For this series to be absolutely convergent, the series

$$
\sum_{k=2}^{\infty}\left|a_{k}\right|=\sum_{k=2}^{\infty} \frac{\ln (k)}{\sqrt{k}}
$$

has to be convergent. However, notice that $\ln (k) \rightarrow \infty$ as $k \rightarrow \infty$,

$$
\frac{\ln (k)}{\sqrt{k}} \geq \frac{1}{\sqrt{k}} \text { for all } k \geq 3
$$

, while $\sum_{k=2}^{\infty} \frac{1}{\sqrt{k}}$ is divergent by the p -series test with $p=\frac{1}{2}$. By the comparison test, the given series is not absolutely convergent.

On the other hand, since $\ln k$ is much smaller than \sqrt{k} with k large enough, $f(k)$ decreases and goes to 0 as $k \rightarrow \infty$. Rigorously, you can verify it by taking derivative and L'Hospital's rule:

$$
f^{\prime}(x)=\frac{\frac{1}{x} \sqrt{x}-\ln (x) \frac{1}{2} \frac{1}{\sqrt{x}}}{(\sqrt{x})^{2}}=\frac{\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{x}} \ln (x) \frac{1}{2}}{x}=\frac{2-\ln (x)}{2 x \sqrt{x}}<0 \text { for all large } x .
$$

So $f(k) \geq f(k+1)$, for large k.
By L'Hospital's Rule,

$$
\lim _{x \rightarrow \infty} \frac{\ln (x)}{\sqrt{x}}=\lim _{x \rightarrow \infty} \frac{\frac{1}{x}}{\frac{1}{2} x^{-\frac{1}{2}}}=\lim _{x \rightarrow \infty} \frac{2}{\sqrt{x}}=0
$$

Thus $f(k) \rightarrow 0$ as $k \rightarrow \infty$, so the Alternating Series Test applies. Consequently, the given series is conditionally convergent.

