Selected Old Quest Problems for Differential Equations

9.3

For the differential equation
\[\frac{5}{x} \frac{dy}{dx} + \frac{5}{xy^4} = 0, \ (x, y > 0), \]

(1) Find the general solution.
(2) If \(y(1) = 2 \), find the particular solution.
(3) Find the value of \(y(e) \).

9.4

1. A drug becomes ineffective at a rate proportional to the amount still present. In other words,
\[\frac{dP}{dt} = kP \text{ for some } k < 0. \]
Half of the drug is effective at exactly \(t = 13 \) day.
(1) Find \(k \).
(2) What is \(t \) when the drug has 90% ineffective ingredients? (i.e. \(P(t) = 10\% P(0) \))

2.* (Set up an equation by yourself)
Scientists began studying the elk population in Yellowstone Park in 1990 when there were 600 elk. They determined that \(t \) years after the study began the population size, \(P(t) \), was increasing at a rate proportional to \(1500 - P(t) \).
Given that the population was 1300 in year 2000,
(1) Set up a differential equation for \(P(t) \);
(2) Using the given values of elk population, find the particular solution to differential equation;
(3) Estimate the size of the elk population in year 2010 (need to use a calculator).
Series Convergence/Divergence Flow Chart

TEST FOR DIVERGENCE

Does \(\lim_{n \to \infty} a_n = 0? \)

\[\sum a_n \text{ Diverges} \]

p-SERIES

Does \(a_n = \frac{1}{n^p}, \ n \geq 1? \)

\[\text{YES} \]

\[\text{NO} \]

\[\text{YES} \]

\[\text{NO} \]

GEOMETRIC SERIES

Does \(a_n = ar^{n-1}, \ n \geq 1? \)

\[\text{YES} \]

\[\text{NO} \]

ALTERNATING SERIES

Does \(a_n = (-1)^n b_n \) or \(a_n = (-1)^{n-1} b_n, \ b_n \geq 0? \)

\[\text{YES} \]

\[\text{NO} \]

TELESCOPING SERIES

Do subsequent terms cancel out previous terms in the sum? May have to use partial fractions, properties of logarithms, etc. to put into appropriate form.

\[\text{YES} \]

\[\text{NO} \]

TAYLOR SERIES

Does \(a_n = \frac{f^{(n)}(a)}{n!}(x-a)^n? \)

\[\text{YES} \]

\[\text{NO} \]

Try one or more of the following tests:

COMPARISON TEST

Pick \(\{b_n\}. \) Does \(\sum b_n \) converge?

\[\text{YES} \]

\[\text{NO} \]

LIMIT COMPARISON TEST

Pick \(\{b_n\}. \) Does \(\lim_{n \to \infty} \frac{a_n}{b_n} = c > 0 \) \(c \) finite \& \(a_n, b_n > 0? \)

\[\text{YES} \]

\[\text{NO} \]

INTEGRAL TEST

Does \(a_n = f(n), \ f(x) \) is continuous, positive \& decreasing on \([a, \infty)? \)

\[\text{YES} \]

\[\text{NO} \]

RATIO TEST

Is \(\lim_{n \to \infty} |a_{n+1}/a_n| \neq 1? \)

\[\text{YES} \]

\[\text{NO} \]

ROOT TEST

Is \(\lim_{n \to \infty} \sqrt[n]{|a_n|} \neq 1? \)

\[\text{YES} \]

\[\text{NO} \]
1 Selected Old Quest Problems for Series

1.1 11.2

1. If the n-th partial sum S_n of an infinite series

$$S_n = 8 - \frac{n}{3^n}$$

find a_n. Also, does the series $\sum_{0}^{\infty} a_n$ converge? What does it converge to?

Answer: $a_0 = S_0 = 8$, $a_n = S_n - S_{n-1} = \frac{2n-3}{3^n}$ for $n \geq 1$.

$\sum_{0}^{\infty} a_n = \lim_{n \to \infty} S_n = 8$.

2. Determine whether the sequence converges:

$$a_n = \frac{n + (-3)^n}{5^n}$$

Does the series converge?

$$\sum_{n=0}^{\infty} \frac{n + (-3)^n}{5^n}$$

Answer: Both yes. (Hint: $\sum \frac{(-3)^n}{5^n}$ converges. For $\sum \frac{n}{5^n}$, use comparison test/ratio test to show it converges.)

1.2 11.3

Determine whether the series converges:

$$\sum_{k=0}^{\infty} \frac{1}{k(\ln(2k))^2}$$

Answer: Yes.

1.3 11.4

1. Determine whether the series converges:

$$\sum_{n=0}^{\infty} \frac{\sin(n)}{n^2}$$

Answer: Yes ($|\sin(n)| \leq 1$)

2. Determine whether the series converges. If converges, conditionally or absolutely:

$$\sum_{n=0}^{\infty} (-1)^n \sin\left(\frac{1}{3n}\right)$$

Answer: converges conditionally. (For $\sum \sin\left(\frac{1}{3n}\right)$, compare to $\sum \frac{1}{3n}$.)
1.4 11.5.4
Determine whether the series
\[
\sum_{n=0}^{\infty} \frac{4}{\sqrt{n+2}} \cos(n\pi)
\]
converges or diverges.
Answer: converges.

1.5 11.6.4
Decide whether the series
\[
\sum_{n=0}^{\infty} 2^n \left(\frac{n-2}{n} \right)^{n^2}
\]
converges or diverges.
Answer: converges.

1.6 11.7.5
Determine which, if either, of the series
1. \[\sum_{n=1}^{\infty} \frac{(-1)^n+2}{\sqrt{n}}\]
2. \[\sum_{k=3}^{\infty} \frac{(-1)^k}{2k \ln(k+3)}\]
are conditionally convergent.
Answer: Both.

1.7 11.8.2
If the series
\[
\sum_{n=0}^{\infty} c_n 4^n
\]
is convergent, which of the following statements must be true without further restrictions on \(c_n\).
1. \[\sum_{n=0}^{\infty} c_n (-4)^n\] is convergent
2. \[\sum_{n=0}^{\infty} c_n (-4)^n\] is divergent
3. \[\sum_{n=0}^{\infty} c_n (-3)^n\] is convergent
4. \[\sum_{n=0}^{\infty} c_n (-3)^n\] is divergent
Answer: 3 is true.
1.8 11.9.4

Find a power series representation for the function

\[f(x) = \ln(7 - x) \]

Answer:

\[f(x) = \ln(7) - \sum_{n=1}^{\infty} \frac{x^n}{n!} \]

We can either use the known power series representation

\[\ln(1 - x) = -\sum_{n=1}^{\infty} \frac{x^n}{n} \]

or the fact that

\[
\ln(1 - x) = -\int_0^x \frac{1}{1 - s} \, ds \\
= -\int_0^x \left(\sum_{n=0}^{\infty} s^n \right) \, ds \\
= -\sum_{n=0}^{\infty} \int_0^x s^n \, ds \\
= -\sum_{n=0}^{\infty} \frac{x^n}{n} \, ds
\]

For then by properties of logs,

\[f(x) = \ln(7) \left(1 - \frac{1}{7} x \right) = \ln(7) - \left(1 - \frac{1}{7} x \right) \]

so that

\[f(x) = \ln(7) - \sum_{n=1}^{\infty} \frac{x^n}{n!} \]

2 Some facts that may be helpful

2.1

For a constant \(c > 0 \)

\[\lim_{n \to \infty} \sqrt[n]{c} = \lim_{n \to \infty} c^{1/n} = 1 \]

2.2

\[\lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n = e^x \]
\[
\lim_{n \to \infty} \left(1 - \frac{x}{n}\right)^n = e^{-x}
\]

For any fixed number \(x\).

2.2

\[
\lim_{x \to 0} \frac{\sin x}{x} = 1
\]

\[
\lim_{x \to 0} \frac{\tan x}{x} = 1
\]

So you will have, for example,

\[
\lim_{n \to \infty} \frac{\sin \left(\frac{1}{n}\right)}{\left(\frac{1}{n}\right)} = 1
\]

2.3

When \(n\) is large,

\[\ln(n) \ll n \ll e^n \ll n! \ll n^n\]

(You can replace \(\ln(n)\) by any \(\log_a(n)\) \((a > 1)\) and replace \(e^n\) by any \(a^n\), \(a > 1\).

For example, you can say \(\log_2(n) < n < (1.01)^n\).)

2.4

\[(n + 1)! = (n + 1) \cdot n!\]

\[(2(n + 1))! = (2n + 2) \cdot (2n + 1) \cdot (2n) \cdots 1 = (2n + 2) \cdot (2n + 1) \cdot (2n)!\]

Note:

\[(2n)! \neq 2 \cdot n!\]

2.5

Be familiar with properties of exponential functions and logarithms.