Selected Old Quest Problems for Differential Equations

9.3

For the differential equation

$$
5 \frac{d y}{d x}+\frac{5}{x y^{4}}=0,(x, y>0)
$$

(1) Find the general solution.
(2) If $y(1)=2$, find the particular solution.
(3) Find the value of $y(e)$.

9.4

1.A drug becomes ineffective at a rate proportional to the amount still present. In other words,

$$
\frac{d P}{d t}=k P \text { for some } k<0
$$

Half of the drug is effective at exactly $t=13$ day.
(1) Find k.
(2) What is t when the drug has 90% ineffective ingredients? (i.e. $P(t)=$ $10 \% P(0))$
2.*(Set up an equation by yourself)

Scientists began studying the elk population in Yellowstone Park in 1990 when there were 600 elk. They determined that t years after the study began the population size, $P(t)$, was increasing at a rate proportional to $1500-P(t)$.
Given that the population was 1300 in year 2000,
(1) Set up a differential equation for $P(t)$;
(2) Using the given values of elk population, find the particular solution to differential equation;
(3) Estimate the size of the elk population in year 2010 (need to use a calculator).

1 Selected Old Quest Problems for Series

$1.1 \quad 11.2$

1. If the n-th partial sum S_{n} of an infinite series

$$
S_{n}=8-\frac{n}{3^{n}}
$$

find a_{n}. Also, does the series $\sum_{0}^{\infty} a_{n}$ converge? What does it converge to?
Answer: $a_{0}=S_{0}=8, a_{n}=S_{n}-S_{n-1}=\frac{2 n-3}{3^{n}}$ for $n \geq 1$.
$\sum_{0}^{\infty} a_{n}=\lim _{n \rightarrow \infty} S_{n}=8$.
2. Determine whether the sequence converges:

$$
a_{n}=\frac{n+(-3)^{n}}{5^{n}}
$$

Does the series converge?

$$
\sum_{n=0}^{\infty} \frac{n+(-3)^{n}}{5^{n}}
$$

Answer: Both yes. (Hint: $\sum \frac{(-3)^{n}}{5^{n}}$ converges. For $\sum \frac{n}{5^{n}}$, use comparison test/ratio test to show it converges.)

$1.2 \quad 11.3$

Determine whether the series converges:

$$
\sum_{k=0}^{\infty} \frac{1}{k(\ln (2 k))^{2}}
$$

Answer: Yes.

$1.3 \quad 11.4$

1. Determine whether the series converges:

$$
\sum_{n=0}^{\infty} \frac{\sin (n)}{n^{2}}
$$

Answer: Yes $(|\sin (n)| \leq 1)$
2. Determine whether the series converges. If converges, conditionally or absolutely:

$$
\sum_{n=0}^{\infty}(-1)^{n} \sin \left(\frac{1}{3 n}\right)
$$

Answer: converges conditionally. (For $\sum \sin \left(\frac{1}{3 n}\right)$, compare to $\sum \frac{1}{3 n}$.)

$1.4 \quad 11.5 .4$

Determine whether the series

$$
\sum_{n=0}^{\infty} \frac{4}{\sqrt{n+2}} \cos (n \pi)
$$

converges or diverges.
Answer: converges.

$1.5 \quad 11.6 .4$

Decide whether the series

$$
\sum_{n=1}^{\infty} 2^{n}\left(\frac{n-2}{n}\right)^{n^{2}}
$$

converges or diverges.
Answer: converges.

$1.6 \quad 11.7 .5$

Determine which, if either, of the series

1. $\sum_{n=1}^{\infty} \frac{(-1)^{n+2}}{\sqrt[3]{n}}$
2. $\sum_{k=3}^{\infty} \frac{(-1)^{k}}{2 k \ln (k+3)}$
are conditionally convergent.
Answer: Both.

$1.7 \quad 11.8 .2$

If the series

$$
\sum_{n=0}^{\infty} c_{n} 4^{n}
$$

is convergent, which of the following statements must be true without further restrictions on c_{n}.

1. $\sum_{n=0}^{\infty} c_{n}(-4)^{n}$ is convergent
2. $\sum_{n=0}^{\infty} c_{n}(-4)^{n}$ is divergent
3. $\sum_{n=0}^{\infty} c_{n}(-3)^{n}$ is convergent
4. $\sum_{n=0}^{\infty} c_{n}(-3)^{n}$ is divergent

Answer: 3 is true.

$1.8 \quad 11.9 .4$

Find a power series representation for the function

$$
f(x)=\ln (7-x)
$$

Answer:

$$
f(x)=\ln (7)-\sum_{n=1}^{\infty} \frac{x^{n}}{n 7^{n}}
$$

We can either use the known power series representation

$$
\ln (1-x)=-\sum_{n=1}^{\infty} \frac{x^{n}}{n}
$$

or the fact that

$$
\begin{aligned}
\ln (1-x) & =-\int_{0}^{x} \frac{1}{1-s} d s \\
& =-\int_{0}^{x}\left(\sum_{n=0}^{\int} s^{n}\right) d s \\
& =-\sum_{n=0}^{\int} \int_{0}^{x} s^{n} d s \\
& =-\sum_{n=0}^{\int} \frac{x^{n}}{n} d s
\end{aligned}
$$

For then by properties of logs,

$$
f(x)=\ln (7)\left(1-\frac{1}{7} x\right)=\ln (7)-\left(1-\frac{1}{7} x\right)
$$

so that

$$
f(x)=\ln (7)-\sum_{n=1}^{\infty} \frac{x^{n}}{n 7^{n}}
$$

2 Some facts that may be helpful

2.1

For a constant $c>0$

$$
\lim _{n \rightarrow \infty} \sqrt[n]{c}=\lim _{n \rightarrow \infty} c^{1 / n}=1
$$

2.2

$$
\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}=e^{x}
$$

$$
\lim _{n \rightarrow \infty}\left(1-\frac{x}{n}\right)^{n}=e^{-x}
$$

For any fixed number x.

2.2

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\sin x}{x}=1 \\
& \lim _{x \rightarrow 0} \frac{\tan x}{x}=1
\end{aligned}
$$

So you will have, for example,

$$
\lim _{n \rightarrow \infty} \frac{\sin \left(\frac{1}{n}\right)}{\left(\frac{1}{n}\right)}=1
$$

2.3

When n is large,

$$
\ln (n) \ll n \ll e^{n} \ll n!\ll n^{n}
$$

(You can replace $\ln (n)$ by any $\log _{a}(n)(a>1)$ and replace e^{n} by any $a^{n}, a>1$. For example, you can say $\log _{2}(n)<n<(1.01)^{n}$.)
2.4

$$
\begin{gathered}
(n+1)!=(n+1) \cdot n! \\
(2(n+1))!=(2 n+2) \cdot(2 n+1) \cdot(2 n) \cdots 1=(2 n+2) \cdot(2 n+1) \cdot(2 n)!
\end{gathered}
$$

Note:

$$
(2 n)!\neq 2 \cdot n!
$$

2.5

Be familiar with properties of exponential functions and logarithms.

