Singularity models for the Ricci flow: an introductory survey

Dan Knopf

At the time this article is being written (May 2003) much of the mathematical
world is waiting with intense interest to see the results of Grisha Perelman’s effort
[22, 23] to resolve William Thurston’s Geometrization Conjecture [28] for closed
3-manifolds by completing the program [16] begun by Richard Hamilton. It is still
too early to give an accurate and fair assessment of the full impact of Perelman’s
work. But in order to aid the many mathematicians who may be inspired by that
work to look more closely at the Ricci flow, this does seem like an appropriate time
to write a brief and purely expository introduction to the topic, intended for the
non-expert. Readers desiring more information are encouraged to read the more
advanced survey articles [6] and [7], as well as to consult Hamilton’s and Perelman’s
original papers.

1. Heuristics

There are two heuristic principles which are useful to keep in mind when one
first studies the (unnormalized) Ricci flow, wherein one starts with a smooth Rie-
mannian manifold (M™, go) and evolves it by the equation

d
(1.1) 5,9 = —2Re,

where Rc denotes the Ricci tensor of the metric g. The first principle is that
equation (1.1) is morally the heat equation for a Riemannian metric. The best
way to see this is by writing the right-hand side of equation (1.1) in harmonic
coordinates. Recall that a coordinate chart ¢ : i/ — R" defined in a neighborhood
U of a point zo on a smooth Riemannian manifold (M™",g) is called harmonic if
the coordinate functions {z* : 1 < k <n} it induces are harmonic throughout #:

AzF =0.

It follows from standard existence and regularity theory for elliptic PDE that a
harmonic coordinate chart exists in a sufficiently small neighborhood U of any z¢ €
M™, and moreover that the metric enjoys optimal regularity in such coordinates.
The feature of harmonic coordinates relevant to the Ricci flow is that the identity
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holds throughout ¢. Using this, it is not hard to see that

8? _
(1.2) —2R;; = _2RTT;ll,ij = QMW (gz'j) + Q5 (9 laag) )

where () is quadratic in the inverse and first derivatives of g. In other words,
the highest-order derivative term in —2R;; appears in a harmonic chart to be the
Laplacian of the component g;; of the metric, regarded as a scalar function in that
chart.

There are at least two reasons why this principle is heuristic and not entirely
rigorous. One is that equation (1.2) is not tensorial; indeed, all covariant derivatives
of the metric vanish identically. Another reason is that when one evolves a metric
by (1.1), coordinates which are harmonic at time ¢ cannot be expected to be so at
time t + ¢, for any ¢ > 0.

Nonetheless, much of what this heuristic principle suggests is almost true.
Equation (1.2) is a quasilinear parabolic equation. (It is quasilinear because the
inverse of the unknown function g (¢) multiplies the highest-order derivatives in the
equation.) In fact, the Ricci flow is quasilinear and almost parabolic. Its failure
to be strictly parabolic stems from the fact that the Ricci flow is defined entirely
in terms of natural geometric quantities, and hence is invariant under the full dif-
feomorphism group. This invariance is a great advantage from the standpoint of
geometry. Fortunately, it is only a minor inconvenience from the standpoint of PDE,
because Dennis DeTurck showed [10, 11] that the flow is equivalent to a strictly
parabolic quasilinear equation, so that short-time existence and uniqueness follow
from standard theory.

The heuristic of thinking of the Ricci flow as a heat equation is useful in another
important sense. The heat equation seeks to regularize its initial data, so one
expects equation (1.1) to improve the metric, at least for a short time. In fact,
initial bounds on the curvature of a metric induce subsequent a priori bounds on
all derivatives of the curvature. These derivative bounds were derived in [3], [2],
and [25, 26]; most known proofs use the maximum principle for parabolic equations
in a familiar technique pioneered by Bernstein.

On a more intuitive level, the heat equation heuristic leads one to expect that
the Ricci flow will mimic the diffusion properties of the heat equation, and thus
will try to make a metric more homogeneous and isotropic. As we will see below,
this expectation too is often justified.

The second heuristic principle is that we should expect the Ricci flow to develop
singularities; in particular, it tells us that the first principle can be misleading if
we take it too literally. One arrives at the second heuristic from the viewpoint
of geometry when one observes that the normalized Ricci flow (defined in (2.1)
below) can converge only to an Einstein metric. Since most Riemannian manifolds
of dimension n > 2 are not Einstein, one should expect something to go wrong. The
second principle is also supported by the viewpoint of analysis. Indeed, equation
(1.1) implies that the scalar curvature evolves by

9 2
(1.3) —R=AR+2|Rc|".

ot
This is a reaction-diffusion equation: the reaction term 2 |Rc|2 may be regarded
as fighting against the diffusion term AR. By a standard estimate, equation (1.3)
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implies that
0 2
—R>AR+ =R
é)tR > AR+ nR

By the parabolic maximum principle, one can then compare solutions of (1.3) with
solutions of the ODE
dp 2
dat ~ n’
obtained by ignoring the diffusion term in (1.3). One concludes that that
1

>
= R, (to) — 2 (t —to)

min

2

Rmin (t)

for all ¢ > to that the solution g (t) exists. Hence if the scalar curvature ever
becomes everywhere positive, a finite-time singularity is inevitable.

The second heuristic principle suggests correctly that a positive resolution of
the Geometrization Conjecture depends on developing an adequate understanding
of singularities. One must learn what the behavior of a solution to the Ricci flow
that becomes singular reveals about the topology of the underlying manifold. The
reason why current research into geometrization concentrates on the analysis of
singularities is because any solutions which remain nonsingular behave very nicely.
Indeed, these are the solutions for which the diffusion term dominates, in accord
with the first heuristic principle. Hence our informal survey begins with such solu-
tions.

2. Nomnsingular solutions

By rescaling space and time, one can modify the Ricci flow so that it preserves
volume. This leads to the equation

0 2r
2.1 —qg=—-2Rc+—
(2.1) 59 c+—9,
where
. Rd
r(t) = Jae Rl
an dp

denotes the average scalar curvature. Equation (1.1) (the unnormalized Ricci flow)
is in a sense the more natural PDE, but equation (2.1) (the normalized Ricci flow)
can be more convenient for taking limits and for establishing certain convergence
properties.

For example, in proving Hamilton’s seminal result [14] that any manifold which
admits a metric of positive Ricci curvature is in fact a space form, one first studies
the solution of equation (1.1). One shows that the solution exists on a maximal time
interval 0 < t < T < oo, that the curvature becomes unbounded as ¢t /T, and that
the metric becomes nearly Einstein at points where the curvature is large. Then
one derives a crucial estimate on the gradient of the scalar curvature. Together
with the observation that the diameter of the solution is uniformly bounded, this
allows one to show that the ratio Rpax/Rmin approaches 1 as the singularity time
is approached. Then one rescales space and time, converting the solution g (¢) of
equation (1.1) into a solution g (#) of equation (2.1). In the final step, one shows
that g (f) exists for all time and converges exponentially in every C* norm to a
metric of constant sectional curvature.
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One way of understanding the role of the normalized flow in this proof is as
follows: because the minimum curvature of the original solution approaches the
maximum curvature as the maximum becomes large, the average curvature itself
becomes large. Intuitively this means that when one rescales, the dilation term
2r/n is large enough to keep the solution nonsingular. So in this case, the diffusion
effect suggested by the first heuristic principle wins: it tames the singularity one
expects from the second heuristic principle. On the other hand, if the curvature
of a solution of (2.1) ever becomes large on a set of small volume, one would not
expect the dilation term to be adequate to avoid a singularity.

One says a solution (M3, g(t)) of the normalized flow (2.1) on a compact 3-
manifold is nonsingular if it exists for all positive time and satisfies a uniform
curvature bound

sup |Rm|<C < 0.
M3 x[0,00)
In this case, M3 is geometrizable. This result was proved in [18]. The proof
uses the Gromov-type convergence results in [17] as well as the advanced tensor
maximum principle of [15], which lets one compare a tensor evolving by a PDE with
a the solution to a system of ODE.

The results in [18] classify nonsingular solutions. The behaviors one observes
for such solutions turn out to be instructive when one later studies singular solu-
tions. Hence it will be useful to recall some aspects of that classification here.

If

(2.2) lim ( sup inj (a:,t)) =0,
t—o0 rEMS3

one says the solution exhibits collapse with bounded curvature. In this case, results
of Cheeger-Gromov imply that M? admits an F-structure, hence is a graph mani-
fold, hence can be decomposed into a union of Seifert fiber-space pieces, all of which
are known to be geometrizable. (An excellent survey is [24].) In case (2.2) does
not hold, one can find £ > 0 and sequences of points z; € M3 and times t; & oo
such that
(2.3) inf (inj (z;,t;)) > e.

JjeEN
Then there exist diffeomorphisms ¢; : M3 — M? such that the pointed sequence
of solutions

(M®,g; (1), ;)

defined by

9; (t) = (#39) (t; +1)
converges locally smoothly in the pointed category to a limit solution

(M2, 9o (1), T00) -

If M3, is compact, it is necessarily diffeomorphic to M3. In this case, results
in [18] prove that g, is a metric of constant sectional curvature K, hence that M?
is a space form. Moreover, one can in some cases prove a stronger convergence than
was stated above. Indeed, if K > 0, then there exists t; large enough so that the
Ricci curvature of g (¢;) is strictly positive; it then follows from Hamilton’s original
result [14] that the original solution converges exponentially fast to a space form.
(In other words, one needed neither to modify by diffeomorphisms nor to restrict to
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a sequence of times.) If K = 0, the same statement holds by [13]. It is conjectured
but not yet proven that a similar statement holds for the case K < 0.

The remaining possibility is that M2  is noncompact, which is in a sense the
most interesting case. A particular consequence of the results proved in [18] is that
there exists a finite collection of finite-volume noncompact hyperbolic manifolds
(H;, h;) with the following properties. For each k¥ € N, there exist truncations
Hir of H; along constant mean curvature tori of area less than 1/k, a time ¢,
and embeddings ; j, (t) : H;x — Moo defined for all ¢ > t; such that the images
Yik (t) (Hi,k) are mutually disjoint submanifolds for all ¢ > ¢, and

0P 974 () 9 ) = bl < 176

in the norm of C* convergence on compact subsets of Hi k- From the perspective
of topology, the most important aspect of this case is that the fundamental group
of each H; injects into M2 under the maps v; . This proves that M2  is Haken,
hence is geometrizable by Thurston’s result [28]. In fact, one can show directly
that the injectivity radius at any point in the complement Mo\ U; 9 (t) (Hix) of
the hyperbolic pieces in the limit remains less than 1/k for all ¢ > ¢;. In particular,
this implies that the complement is a manifold-with-boundary which admits an
F-structure, hence may be decomposed into a union of Seifert fiber-space pieces.

3. Singular solutions

Having seen that any manifold which admits a nonsingular solution of the Ricci
flow is known to be geometrizable, one is led to ask the following question: What
does a singularity of the flow reveal about the topology of the underlying manifold?
A powerful technique in geometric analysis for answering this question is to ‘blow-
up’ the singularity, obtaining a limit flow whose properties should yield information
about the geometry of the original manifold near the singularity just prior to its
formation.

To see how this is done, consider a solution (M™,g (¢)) of the unnormalized
Ricci flow on a maximal time interval 0 < ¢ < 7. For simplicity, we shall discuss
the case that 7' < oo, although an analogous theory is available for singularities
which form in infinite time. In the case of a finite-time singularity, it follows from
short-time existence results for the flow that

3.1 lim { sup |Rm(z,t)| ] = co.
(3.) tmy (sup 1R (2,0 )

To develop intuition, consider what is perhaps the simplest example of a finite-
time singularity. Let gcan denote the canonical metric of constant sectional curva-
ture K = 1 on the sphere S™. Consider a 1-parameter family g (¢) of conformal
metrics defined by

(3.2) git)=r (t)2 Ycan,
noting that g (t) has constant sectional curvature r (¢)”>. Observe that g (¢) is a
solution of the Ricci flow if and only if

dr 0
27’% *Jcan = ag =—-2Rc [g] =—-2Rc [gcan] =-2 (TL - 1) * 9ean,
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hence if and only if

(3.3) r(t)=4/rd —2(n—-1)t=+/2(n—-1)VT —t.

So if g (t) solves the Ricci flow, it must become singular at T = r3/ (2 (n — 1)).

In general, one says that a finite-time singularity of (M™,g(t)) is of Type I
or fast-forming if it occurs at the natural rate suggested by this example, hence if
there exists C' < oo such that

sup |Rm|-(T —-1t) <C < .
Mn x[0,T)

On the other hand, one says the singularity is of Type Ila if

sup |Rm|- (T —1t) = oo.
M x[0,T)
Solutions with this property are also called slowly-forming singularities. (This ter-
minology may be somewhat nonintuitive initially, but is actually perfectly natural
for reasons involving the sharpness of certain a priori estimates which guarantee
short-time existence of the flow.)

It is common to study a singularity by the technique of parabolic dilation. One
chooses sequences of points z; € M™, times t; € [0,T') increasing monotonically to
T, and dilating factors A\; > 0. Using these, one defines a sequence (M", g; (t),z;)
of pointed solutions to the Ricci flow, where

t
gj (t) = )\jg (tj + )\—> .
J

Notice that each solution g; (t) exists on the time interval —\;t; <t < A; (T —¢;).

One chooses the sequences {x;}, {t;}, and {\;} in order to get a good limit.
A flat limit would not be desirable because it would not reveal enough about the
geometry of the original solution. (Intuitively, getting a flat limit means one has
dilated too much.) On the other hand, one wants uniform bounds on the curvatures
of the metrics g; (0) in order to take advantage of the derivative estimates described
in Section 1. (Bounds on the curvature of a solution to the Ricci flow imply bounds
on all derivatives of the curvature.) Accordingly, one usually chooses z; and A; so
that the curvature |Rm (z;,t;)| is comparable to sup,¢c 4= [Rm (2,¢;)| and so that

(3.4) 0<c< /\;1 |Rm (z,t;)] < C < oo.

Recalling (3.1), one chooses the sequence of times so that sup,c4» [Rm (2,¢;)| is
comparable to the maximum curvature over a sufficiently large interval of earlier
times.

Having made suitable choices, one wants to prove that (M™",g; (t),z;) con-
verges locally smoothly in the pointed category to a limit solution (M7, g (t) , Zoo)
of the Ricci flow, called a singularity model (also called a ‘final time limit flow’ in
the literature). As we shall see below, such solutions are typically very special. (For
example, a singularity model formed from a Type Ila singularity will exist for all
times —oo < t < oo, which helps explain why such singularities are called ‘slowly
forming’.) By developing an adequate understanding of these model solutions, one
hopes to obtain local information about the geometry of the original sequence just
prior to the formation of the singularity. In particular, the strategy for extracting
topological information about a 3-manifold M? from a solution (M3, g (t)) of the
Ricci flow that becomes singular is to perform a geometric-topological surgery on
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M3 just prior to the singularity in such a way that the maximum curvature of the
solution is reduced by an amount large enough to permit the flow to be continued
on the piece or pieces that remain after the surgery. In the final step of this pro-
gram, one needs to argue that only geometrically recognizable pieces will remain
after finitely many surgeries.

The main difficulty in obtaining convergence to a singularity model is obtaining
an adequate injectivity radius estimate for the sequence (M™,g; (t),z;), namely
an estimate of the form

. .. c
B O ) 2 e R 0

Until recently, such estimates had to be derived by ad hoc means. For example,
in Section 23 of [16], Hamilton proved an isoperimetric inequality that implies an
injectivity radius estimate for appropriately chosen sequences of dilations approach-
ing a Type I singularity in dimension three. In Section 22 of the same paper, he
proved an injectivity radius estimate for odd-dimensional solitons that is useful for
dimension reduction. (See Section 5, below). The paper [8] derives an injectivity
estimate useful for forming noncompact limits of Type Ila singularities. One could
cite other examples, but the recent work [22] of Perelman yields the most powerful
and general estimate known to date, which enables one to construct singularity
models under very general hypotheses.

4. Singularity models

By analogy with other geometric evolution equations (especially the mean cur-
vature flow) one expects singularity models to have special properties. Indeed, such
solutions are generally ancient (existing for —oo < t < w) or immortal (existing
for @ <t < 400) or even eternal (existing for —oo < t < +00). Many singularity
models also exhibit special symmetries or asymptotic symmetries. (See [9].)

An important class of singularity models is the set of generalized fized points.
Such solutions can be described in either of two equivalent ways. One says g (t) is a
self-similar solution of the Ricci flow if there exist scalars o (t) and diffeomorphisms
1y of M™ such that

(4.1) g9(t) =0 (1) ¥z (90) -

Notice that a self-similar solution changes only by diffeomorphism and rescaling,
hence may be regarded as a fixed point of the Ricci flow modulo diffeomorphisms.
On the other hand, one says that a fixed Riemannian manifold (M™, go) is a Ricci
soliton if the identity

(4.2) —2Rc(g0) = Lxgo + 2Ago

holds for some constant A\ and some complete vector field X on M™. Notice that
(4.2) is a coupled elliptic system for go and X. Because a Ricci soliton is Einstein
if the vector field X vanishes identically, any solution of (4.2) may be regarded
as a generalization of an Einstein metric. One says a Ricci soliton is shrinking,
translating, or expanding in the cases A < 0, A = 0, A > 0 respectively.

It is not hard to show that there is a one-to-one relationship between self-similar
solutions of the flow and Ricci solitons. Hence the two concepts are commonly
regarded as equivalent.
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The best-known Ricci soliton is the cigar (R?,gs) found by Hamilton. This is
the complete metric

dz? + dy?
9= = 21 2
1+2z%+y
on R? of positive scalar curvature
4
Ry = —F+—.
P a2

It is not hard to show that the curvature of the cigar decays like e~2%, where

s = arcsinh y/x2 + y? is the metric distance from the origin. (The cigar is actually
one representative of a family of K#hler-Ricci metrics that exist on C2™ and certain
other complex manifolds. These are studied in [4, 5] and [12].) The reason why
the cigar is of particular relevance to Geometrization is that in dimension n = 3,
singularity models corresponding to the soliton metric

(4-3) go = 9x + dz?

on quotients of R® would represent a serious obstacle to proving Geometrization
via the Ricci flow, because it is not known how to perform surgery at singularities
tending to such limits. (We will see the cigar again in Section 5 below.)

Another family of Ricci solitons of special interest comprises the complete met-
rics (R, go) found for n > 3 by Robert Bryant and Tom Ivey [21]. These are
called gradient solitons because the vector field X in (4.2) is the gradient field of a
potential function. Although the metrics go cannot be written down explicitly, one
can compute that the curvature decays like 1/s as one moves away from the origin.

In spite of the special properties possessed by singularity models in all dimen-
sions, singularities of the Ricci flow (M™, g (¢)) in high dimensions are expected to
be very complex. In dimension n = 3 however, there are three observations that
lead one to expect singularities to be relatively tractable.

The first observation is a pinching estimate proved independently by Hamilton
[16] and by Ivey [20] and later improved by Hamilton [18]. Recall that one may
regard the Riemann curvature tensor as a self-adjoint operator

Rm : A’TM"™ = N*TM".
On a 3-manifold, A2T, M? is a 3-dimensional vector space for each z € M?3, so one
may denote the eigenvalues of Rm (z) by Ay < Ay < A3. The curvature pinching
estimate says that if (M3, g(t)) is a solution of the Ricci flow for 0 < ¢ < T such
that A\; > —1 everywhere on M? at ¢ = 0 (which can always be achieved by scaling),
then at any point x € M? and time ¢ € [0, T) such that A\; < 0, the scalar curvature
satisfies
R > |A1| (log|A] +1log (1 +t) —3).

This estimate says that at any point and time where a sectional curvature is negative
and large in absolute value, one finds a much larger positive sectional curvature.
It implies in particular that any singularity model (M2, go (t),%oo) must have
nonnegative sectional curvature at ¢ = 0.

The second observation which restricts the possible singularity models one may
see in dimension n = 3 is the fact that so(2) is the only proper nontrivial Lie
subalgebra of so(3). This fact says that at the origin of any singularity model,
the eigenvalues of the curvature operator (after scaling) must conform to either the
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signature (+, +,+) or else (0,0,4). The other possible pattern, (0,0,0,), is ruled
out by (3.4).

The third observation is the fact that a strong maximum principle holds for
tensors. Because the curvature operator of any singularity model (Mgo, Joo (1), :coo)
is nonnegative at ¢ = 0 and has either the signature (+,+,+) or else (0,0, +) at
the single point (zs,0), the strong maximum principle says that the curvature
operator must possess either the signature (4, +, +) or else (0,0, +) respectively at
all points x € M2, and times ¢ > 0 such that the limit solution g, (¢) exists.

When viewed at an appropriate length scale, the geometry of a solution to the
Ricci flow (M3, g (t)) that becomes singular at time 7' < oo closely resembles the
singularity model (M3, go (t) , ) one obtains by blowing-up the singularity, at
least for points near the singularity and times just before 7.

The standard example of a singularity of signature (+,+,+) is the shrinking
round 3-sphere with the metric r (£)* gean, where r (¢) is given by (3.3) with n = 3.
As was remarked above, this singularity model itself exhibits a Type I singularity
at some finite time.

Singularities of signature (0,0, +) are called neckpinches. Near the singularity,
a solution which encounters a finite-time neckpinch is expected to resemble the
soliton solution
(4.4) g (t) = ds® +r () gean
on R x 82. Here r (t) is given by (3.3) with n = 2. Notice that this model also
forms a Type I singularity at some time 7" < co. Understanding neckpinches is a
vital part of current efforts to obtain topological information from the Ricci flow:
developing necks should be geometrically and topologically simple enough that one
could remove a small piece of a neck just before a singularity forms in such a way
that the curvature on the complement of this piece obeys a bound which allows the
flow to be continued there, at least for a short time.

Remarkably, there were until recently no rigorous examples of neckpinch singu-
larities on compact manifolds. The first examples of any sort were warped-product
metrics constructed by Miles Simon [27] on R x §™. His construction used a su-
persolution as a barrier to force a singularity to occur in finite time on a compact
subset of the manifold. Sigurd Angenent and I have recently studied neckpinch
singularities on S™*! for any n > 2. We consider metrics of the form

g(@,t) = ¢ (2,0)° d2* + 4 (2,8)" gean
on (—1,1) x 8™, which we identify with the sphere S"*! with its north and south
poles removed.

A rough outline of our method is as follows. We call a local minimum of the
radius a ‘neck’ and a local maximum a ‘bump’. We consider SO(n + 1)-invariant
metrics on S™*! which possess bumps and necks, have positive scalar curvature
everywhere, and also obey a gradient bound. One can construct simple examples of
such data by removing a neighborhood of the equator of the standard unit sphere
and replacing it with a narrow neck. (The figure below shows a reflection-symmetric
metric having a single neck and two bumps, but our results are more general.) The
hypothesis of SO(n + 1) symmetry implies that the Riemann curvature tensor is
completely determined by the sectional curvature K of the 2-planes perpendicular
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to the spheres {z} x 8™ and the sectional curvature K; of the 2-planes tangential
to these spheres. We derive pinching estimates for these curvatures which imply
that a Type I (rapidly forming) singularity must develop at a neck at some time
T < oo. These estimates show that any sequence of parabolic dilations formed at
the developing singularity converges to a shrinking cylinder soliton (4.4) on Rx 8™,
with r (¢) given by (3.3). We prove that this convergence takes place uniformly in

any ball of radius o (\/ —(T —t)log(T — t)) centered at the neck and obtain further

estimates for the asymptotics of the developing singularity. (In forthcoming work,
we intend to show that these estimates are in fact sharp.)

radius

A 4

A sphere with one neck and two bumps.

5. The topology of singularities

As was mentioned above, there are reasons to believe that singularity models
in dimension n = 3 are amenable to classification. In fact, using delicate geometric
and analytic arguments, a partial classification was obtained in [16]. Let us now
recall the part of that classification that deals with finite-time singularities.

(1) If a solution (M3, g (t)) of the unnormalized Ricci flow encounters a Type
I singularity, then after performing dilations correctly and obtaining an
injectivity radius estimate, one obtains a limit which is a quotient of either
(a) a compact shrinking round sphere (S%,g(t)), where g (t) is given by
(3.2), or
(b) a noncompact shrinking cylinder (R x 82, g (t)), where g (t) is given
by (4.4).
(2) If a solution (M3, g (t)) of the unnormalized Ricci flow encounters a Type
ITa singularity, then after performing dilations correctly and obtaining an
injectivity radius estimate, one gets a quotient of one of the following
noncompact limits:
(a) a translating self-similar solution (R?, g (t)) where g (¢) has the form
given in (4.1),
(b) a shrinking cylinder (R x 8%, ¢(t)) as in Case 1b above, or
(c) a cigar product (R®, g (t)), where g (t) is the self-similar solution cor-
responding to the soliton metric go given in (4.3).
An example of what one might see in Case 2a is the Bryant—Ivey soliton men-
tioned above. For any limit in Case 2a, one performs what is called dimension
reduction to obtain an ancient solution. (Dimension reduction is a technique that
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involves taking a limit around a suitable sequence of points tending to spatial in-
finity; it will not be discussed further in this introductory survey.) If the ancient
solution one obtains is not in fact an eternal solution which attains its maximum
curvature, one then takes a third limit about a suitable sequence of points and
times tending to —oo where the curvature is sufficiently near its maximum. Having
done so, one sees either Case 2b or 2¢ above.

Since the limit in Case la is compact, the underlying manifold of the original
solution must have been S2 or one of its quotients. In the other cases, the singularity
model gives local information about the original solution near the singularity just
prior to its formation. The recent work [22] of Perelman rules out Case 2c. This
is highly significant, because (as was remarked above) it was not known how to
perform surgery on the original solution if this case were to occur.

There are interesting connections between the topology of a manifold and the
singularities it admits. Some of these are revealed by the method of performing
geometric-topological surgeries just prior to singularity formation. Others may be
found by more direct means. To conclude this survey, we offer one example of such
a connection. In recent work [19], Tom Ilmanen and I were able to rule out product
metrics on S x 82 as possible singularity models, thereby answering affirmatively
a conjecture made in [16]. Our result rests on a more general principle which yields
a lower bound for the diameter of any solution (M™,g(t)) to the Ricci flow on
certain manifolds of any dimension. Having such a bound implies in particular that
any singularity model constructed from a finite-time singularity on one of those
manifolds must be noncompact.

Here is an outline of the proof. Given a free homotopy class I' on a compact
Riemannian manifold (M™", g), we define

L,(T) = ’lyr€l£ length ()

and
Ay (RT)
mg(T) = liminf ===
Then we prove the monotonicity result that if (M™, g (¢)) is a solution of the Ricci

flow, then
Mg(ty) (T) > myg,) (T)

for any t; > to. In certain cases (for example, if the image of ' in Hy(M™;R)
is nonzero, or if M?® is Haken, or if 7 (M?) is word-hyperbolic) one knows that
mg(gy (T') is positive. (Question: when is my(g) (T') positive for a free homotopy
class T' in a homology 3-sphere?) Whenever one knows that m ) (') is positive,
our method yields a lower bound for the diameter of the solution g (¢) for however
long it exists. In particular, if @« € Hy(M™;Z) is any element of infinite order,
one concludes that the infimum of the lengths measured with respect to g (¢) of all
curves representing « is bounded below by some ¢ > 0 depending only on o and go.

This survey has presented only a tiny fraction of what is known by experts
in singularity formation for the Ricci flow. As was remarked in the introduction,
anyone wishing more detailed information is urged to consult the papers of the
original authors.
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