
In An example of neckpinching for Ricci flow on Sn+1, we considered evolving
metrics on (−1, 1)× Sn of the form

g = ϕ(x, t)2(dx)2 + ψ(x, t)2gSn

and imposed boundary conditions to ensure that these extend to smooth metrics
on Sn+1. In studying the evolution of these metrics by Ricci flow, we found it
convenient to introduce the arc-length coordinate s(x, t) =

∫ x
0
ϕ(x′, t) dx′ and to

write ψ(s, t) as shorthand for ψ
(
s(x, t), t

)
.

In §10 of the paper, we presented an argument to prove that a particular class
of solutions exhibits “single-point pinching” behavior. The argument proceeded
by applying the maximum principle to a family of lower barriers for the quantity
v = ψs in order to show that ψ is strictly positive at any small positive distance
from the singularity. Nataša Šešum has pointed out that we did not fully verify the
boundary conditions when applying the maximum principle. In this short note, we
present one possible approach to completing the proof. In order to keep the note
relatively self-contained, we duplicate some results from the original paper in what
follows.

The set-up

We have a solution of the system

ψt = ψss − (n− 1)
1− ψ2

s

ψ
,(1a)

ϕt = n
ψss
ψ
ϕ,(1b)

defined for −1 ≤ x ≤ 1 and 0 ≤ t < T originating from initial data that are
reflection symmetric with exactly one “bump” per hemisphere. Thus:

ψ(−x, t) = ψ(x, t) and ϕ(−x, t) = ϕ(x, t) ∀x, t,(2)

∃x0 ∈ (0, 1) such that

{
ψx(x, 0) > 0 on (0, x0),

ψx(x, 0) < 0 on (x0, 1].
(3)

It follows from the Sturmian theorem (see Lemma 5.5) that there exists a smooth
function x∗ : [0, T )→ (0, 1) such that ψx(x∗(t), t) = 0, while ψx(x, t) is positive for
0 < x < x∗(t) and negative for x∗(t) < x ≤ 1.

We may assume that our solution also has the following properties:

|ψs(x, t)| ≤ 1 for all (x, t) ∈ (−1, 1)× [0, T ) (see Proposition 5.1),(4)

ψt(x, t) ≤ 0 for all (x, t) ∈ (−1, 1)× [0, T ) (see Proposition 5.2),(5)

sup
x,t

∣∣ψψss∣∣ <∞ (see Corollary 3.2).(6)

As shown in Proposition 5.3, this implies the existence of C0 such that
∣∣(ψ2)t

∣∣ ≤ C0

for all x ∈ [−1, 1] and t ∈ [0, T ). Then as shown in Proposition 5.4, the limit
ψ(x, T ) = limt↗T ψ(x, t) exists, and the convergence is uniform for |x| ≤ 1.
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The fix

Let Ψ := max0<x<1 ψ(x, T ) > 0. The assumption of one bump per hemisphere
in our initial data implies that there exist 0 ≤ x1 < x3 ≤ x4 < x2 ≤ 1 such that

ψ(x, T ) = 0 ∀x ∈ [0, x1] ∪ [x2, 1],

ψ(x, T ) = Ψ ∀x ∈ [x3, x4],

0 < ψ(x, T ) < Ψ ∀x ∈ (x1, x3) ∪ (x4, x2),

ψs(x, T ) ≥ 0 ∀x ∈ [x1, x3],

ψs(x, T ) ≤ 0 ∀x ∈ [x4, x2].

Lemma. For all x ∈ (x1, x2), the limit

ϕ(x, T ) = lim
t↗T

ϕ(x, t)

exists and satisfies ϕ(x, T ) > 0. The convergence is uniform on compact subsets of
(x1, x2), and ϕ(x, T ) is continuous on (x1, x2).

Proof. We have
∂

∂t
logϕ(x, t) = n

ψss
ψ
.

By (6), |ψψss| is uniformly bounded. So by (5), we have∣∣∣∣ ∂∂t logϕ(x, t)

∣∣∣∣ ≤ C

ψ(x, t)2
≤ C

ψ(x, T )2
.

Continuity of ψ(x, T ) implies infI ψ(x, T ) > 0 for any closed interval I ⊂ (x1, x2),
which in turn implies that supI

∣∣(logϕ)t
∣∣ < ∞. Hence limt↗T logϕ(x, t) exists

uniformly for all x ∈ I. Upon exponentiation, we see that ϕ(x, t) converges to a
positive limit for all x ∈ (x1, x2), and that the convergence is uniform on compact
intervals I ⊂ (x1, x2). �

Lemma. For any x5 ∈ (x1, x3), there exists a time t0 ∈ (0, T ) such that

inf
t0<t<T

ψs(x5, t) > 0.

Proof. Choose r > 0 so small that [x5 − r, x5 + r] ⊂ (x1, x3). On the interval
(x1, x3), we know that ψs(x, T ) ≥ 0. Since ψ(x5, T ) < Ψ = ψ(x3, T ), and since
ψ(x, t) → ψ(x, T ) uniformly in x, it follows that if t is sufficiently close to T , the
function x 7→ ψ(x, t) attains its maximum somewhere in the interval [x5 + r, 1].
Thus we have ψs(x, t) > 0 on (x5 − r, x5 + r)× (t0, T ) for some t0 ∈ (0, T ). �

By constructing a lower barrier, we will obtain a uniform lower bound.

Lemma. ψs(x5, t) has a positive lower bound for t0 ≤ t ≤ T .

Proof. The function v = ψs satisfies

(7) vt = vss +

{
n− 2

ψ
ψss −

n− 1

ψ2
(1− ψ2

s)

}
v.

Since we have chosen r > 0 so small that [x5 − r, x5 + r] ⊂ (x1, x3), we know that
ψ(x, t) is uniformly bounded from below on [x5 − r, x5 + r]. Since |ψs| ≤ 1 and
|ψψss| ≤ C everywhere, we find that there exists a constant Q such that∣∣∣∣n− 2

ψ
ψss −

n− 1

ψ2
(1− ψ2

s)

∣∣∣∣ ≤ Q
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on [x5 − r, x5 + r]× (t0, T ). It follows that v satisfies

(8) vt − vss +Qv > 0 on [x5 − r, x5 + r]× (t0, T ).

Now consider the function

V (x, t) := e−λt cos
(
µ(t)ς(x, t)

)
,

in which λ > 0 is a constant and µ(t) > 0 is a function, both of which we will
choose below. The function ς(x, t) is the signed distance from x5 to x at time t:

ς(x, t) :=

∫ x

x5

ϕ(x′, t) dx′.

Note that by definition,

ςs =
ςx
ϕ

= 1.

Since | logϕ(x, t)| is uniformly bounded on [x5−r, x5 +r]× [0, T ], there exists c > 0
such that

c|x− x5| ≤ |ς(x, t)| ≤
1

c
|x− x5| for x ∈ [x5 − r, x5 + r], t ∈ [0, T ].

To show that V is a lower barrier, we compute

Vt − Vss +QV = (Q+ µ2 − λ)V + e−λt {µ′ς + µςt} sin
(
µς
)

= e−λt
{

(Q+ µ2 − λ) cos(µς)−
{µ′
µ

+
ςt
ς

}
µς sin(µς)

}
.

Because ϕt = nψss

ψ ϕ, there exists C1 such that

|ςt(x, t)| =
∣∣∣∣∫ x

x5

n
ψss
ψ
ϕdx

∣∣∣∣ ≤ ∣∣∣∣C ∫ x

x5

ϕdx

∣∣∣∣ = C1|ς(x, t)|.

We now set µ(t) = µ0e
2C1t, and choose µ0 so large that∣∣µ0e

2C1tς(x5 ± r, t)
∣∣ > π

2

for all t ∈ [t0, T ). Since x 7→ ς(x, t) is strictly increasing, there exist continuous
functions x6, x7 : [t0, T )→ R with

x5 − r < x6(t) < x5 < x7(t) < x5 + r

and
µ(t)ς(x6(t), t) = −π

2
, µ(t)ς(x7(t), t) =

π

2
.

On the region

B := {(x, t) | t0 < t < T, x6(t) < x < x7(t)},
we have

µ′

µ
+
ςt
ς
≥ 2C1 − C1 > 0.

We next choose λ = Q+ µ2
0e

4C1T so that

λ > Q+ µ(t)2 for t0 ≤ t < T.

In the region B, one has |µς| < π
2 , so that

Vt − Vss +QV < 0,

while by (8), v = ψs satisfies the opposite inequality. The same is true of αV for
any α > 0.
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We conclude the argument by verifying that αV ≤ v on the parabolic boundary
of B if α is small enough, and then invoking the maximum principle. Indeed, if
x = x6(t) or x = x7(t), then µ(t)ς(x, t) = ±π/2, so that V (x, t) = 0 < v(x, t). At
t = t0, we observe that v(x, t0) is a positive continuous function of x ∈ [x5−r, x5+r],
so that inf |x−x5|≤r v(x, t) > 0. This implies that for small enough α > 0, one has

αV (x, t0) ≤ v(x, t0) for all x ∈
[
x6(t0), x7(t0)

]
.

By the maximum principle, we have αV (x, t) ≤ v(x, t) for all (x, t) ∈ B, and in
particular,

v(x5, t) ≥ αV (x5, t) = αe−λt ≥ αe−λT .
In short, v(x5, t) = ψs(x5, t) has a positive lower bound for t0 ≤ t ≤ T . �

The conclusion

At this point, one can continue as in §10 of the original paper (specifically,
Proposition 10.2) to conclude that for every δ > 0, there exists ε > 0 such that for
all t ∈ (t0, T ) and x ∈ (0, x5), one has

v(x, t) ≥ ε
(
s(x, t)− ρ(t)− δ

)
,

where

ρ(t) = n

∫ t

t0

∫ x5

0

ψs(x, t)
2

ψ(x, t)2
dx dt.

Finally, we note that the assumption in §10 that the diameter of the solution
remains bounded is unnecessary: all solutions under consideration have bounded
diameter, as is proved in a subsequent paper (S.B. Angenent, D. Knopf, Precise
asymptotics of the Ricci flow neckpinch, Comm. Anal. Geom. 15 (2007), no. 4,
773–844).
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