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Chapter 1

Introduction

In [11], Hamilton determined a sharp differential Harnack inequality of
Li-Yau type for complete solutions of the Ricci flow with non-negative
curvature operator. This Li-Yau-Hamilton inequality (abbreviated as
LYH inequality below) is of critical importance to the understanding
of singularities of the Ricci flow, as is evident from its numerous ap-
plications in [10], [12], [13], and [14]. Moreover, it has been informally
claimed by Hamilton that the discovery of a LYH inequality in dimen-
sion 3 valid without any hypothesis on curvature is the main unresolved
step in his program of approaching Thurston’s Geometrization Conjec-
ture by applying the Ricci flow to closed 3-manifolds. See [13] for some
of the reasons why such an inequality is believed to hold. (One may also
consult the survey paper [2].) Based on unpublished research of Hamil-
ton and Hamilton—Yau, the search for such a LYH inequality appears to
be an extremely complex and delicate problem. Roughly speaking, their
approach is to start with the 3-dimensional LYH inequality for solutions
with nonnegative sectional curvature and try to perturb that estimate
so that it holds for solutions with arbitrary initial data. Because of an
estimate of Hamilton [13] and Ivey [15] which shows that the curvature
operator of 3-dimensional solutions tends in a sense to become nonneg-
ative, there is hope that such a procedure will work. Some unpublished
work of Hamilton and Yau appears close to establishing a general LYH
inequality in dimension 3. However, so far no such inequality is known.

Due to the perturbational nature of the existing approaches, it is
also of interest to understand how general a LYH inequality one can
prove under the original hypothesis of nonnegative curvature operator.
In this direction, Hamilton and one of the authors [6] obtained a lin-
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ear trace LYH inequality for a system consisting of a solution of the
Lichnerowicz-Laplacian heat equation for symmetric 2-tensors coupled
to a solution of the Ricci flow. Since the pair of the Ricci and met-
ric tensors of a solution to the Ricci flow forms such a system, their
linear trace inequality generalizes the traced case of Hamilton’s tensor
(matrix) inequality. In [10] Hamilton had already observed the formal
similarity between his proof of the 2-dimensional trace LYH inequality
for the Ricci flow and Li and Yau’s proof [16] of their Harnack inequality
for the heat equation on Riemannian manifolds. In a sense, the linear
trace inequality generalizes this link to higher dimensions. In dimension
2, meanwhile, the link was made stronger and more evident by the dis-
covery [3] of a 1-parameter family of inequalities interpolating between
the Li-Yau and linear trace estimates.

In another direction, one recalls that Hamilton’s matrix inequality
is equivalent to the positivity of a certain quadratic form. Hamilton
observed [13] that the evolution equation satisfied by that quadratic
suggests that his LYH inequality may be some sort of extension of non-
negative curvature operator. This was shown to be true by S.-C. Chu
and one of the authors in [4]. They introduced a degenerate metric
and a certain compatible connection on space and time that extends
the Levi-Civita connection of a solution of the Ricci flow. They proved
that Hamilton’s quadratic is in fact the curvature of that connection.
Because the space-time metric and connection satisfy the Ricci flow for
degenerate metrics, one can then apply the methods of [8] to show that
the quadratic satisfies a nice evolution equation. This fact is the starting
point for the present paper.

In this paper, we prove a new differential Harnack inequality of Li-
Yau-Hamilton type for the Ricci flow by generalizing the construction in
[4]. Our inequality applies to solutions of the Ricci flow coupled to a 1-
form and a 2-form solving Hodge-Laplacian heat-type equations. In this
sense, one may regard it as a linear-type matrix LYH inequality. In its
general form, it looks quite different from Hamilton’s matrix inequality
— except in the Kéahler case, where as a special case, one may take
the 1-form to be the exterior derivative of the scalar curvature and the
2-form to be the Ricci form, thereby obtaining an inequality slightly
weaker but qualitatively similar to Hamilton’s. (Note that Cao [1] has
extended Hamilton’s LYH inequality in the Ké&hler case to solutions
with nonnegative bisectional curvature.) We state the general form of
our result (Theorem 40) as our



Main Theorem: Let (M,g(t)) be a solution of the Ricci flow on a
closed manifold and a time interval [0,$2). Let Ay be a 2-form which is
closed at t =0, and let Ey be a 1-form which is closed at t = 0. Then
there is a solution A(t) of

o
A= Bad, A(0) = A

and a solution E (t) of

0 2
a7 F = DaE —d| A}, E (0) = E,

which ezist for t € [0,92), where —Ay = dé + dd is the Hodge—de Rham
Laplacian. Suppose that the quadratic

‘I( (A7 E’ U7 W)

= Rm (U,U) = 2(VwA,U) + [A(W)]> = (VwE, W)

= RijpeUU* + 2WIV ;AU + (71 A pAgy — Vi E) WIW*
is non-negative at t = 0 for any 2-form U and 1-form W. Then the
matriz inequality U (A, E,;U, W) > 0 persists for all t € [0,12).

The above linear-type inequality is a special case of Theorem 39 ob-
tained by taking a limit which actually scales away part of the main
highest order terms in the more general LYH matrix inequality estab-
lished in Theorem 39.

Corollary A: Under the hypotheses above, the trace inequality
0< (A, EW)=Rec(W,W)—2(5A) (W) + |A]” + 6E

persists for all t € [0,).

Corollary B: Let (M, g (t)) be a Kahler solution of the Ricci flow with
non-negative curvature operator on a closed manifold M. Then for any
2-form U, 1-form W, and all t > 0 such that the solution exists, one
has the matriz estimate

1 1
0 <Rm(U,U) = 2(Vwp,U) + 15 W%+ S Re(W,W)

+Re2 (W, W) + % (VVR) (W, W),
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where p is the Ricci form. By setting U = X AW and tracing over W,
this emplies the trace estimate

0 2R n
< — — —
0_8tR+ ; +2t2+2<VR,X)—I—2Rc(X,X)

for any 1-form X.
Although this LYH inequality is weaker than the trace inequality

special case of the matrix inequality in [1], it qualitatively similar, and
it arises from a much more general inequality.

Corollary C: Let (M?,g(t)) be a solution of the Ricci flow on a
closed surface. If (¢, f) is a pair solving the system

0
“o=A
50 = A6+ Ro
0
—f=A 2
then the trace inequality
0< RIX|”+2(Ve,X) +%f

s preserved.
This paper is structured as follows:

e In §2, we extend the methods of [4] to the case of the Ricci flow
with a cosmological term p. Only by doing so for y = 1/2 are we
able to display Hamilton’s differential Harnack quadratic of Li-Yau
type as exactly equal to the curvature of a space-time connection,
and thus to provide the reader with a precise glossary between the
space-time approach and the computations in [11]. A similar but
less precise correspondence was earlier established in [4].

e In §3, we study all symmetric space-time connections that are com-
patible with the degenerate space-time metric and evolve via the
Ricci flow for degenerate metrics. Because these connections are
not unique, their curvature tensors yield new Li—Yau-Hamilton in-
equalities, which include Hamilton’s matrix inequality as a special
case. We then employ scaling arguments to derive a non-negative
symmetric bilinear form on space-time, which is equivalent to the
quadratic ¥ described in classical language in the Main Theorem,
and whose traced form yields Corollary A.



e In §4, we develop some examples in order to compare a few special
cases of the new Li—Yau-Hamilton inequality with known results.
In particular, we derive Corollary B (Proposition 44) and Corol-

lary C (a result of tracing the matrix inequality in Proposition
47).

Acknowledgement 1 The authors wish to thank Grigori Perelman for
calling their attention to an error in the original preprint of this paper.
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Chapter 2

The Ricci flow rescaled by
a cosmological term

2.1 Self-similar solutions of the Ricci flow

In this section, we recall the equations for self-similar solutions to the
Ricci flow (called Ricci solitons by Hamilton) in order to motivate the
introduction of the Ricci flow with a cosmological term. The basic
reference is §3 of [11].

Definition 2 A solution (M™, g (t)) of the Ricci flow

0
—g=-2R
at? ¢
on a time interval T containing 0 is called a homothetic Ricci soliton if
g9 (st) =a(t)(4:9) () (2.1)

for some fized metric § on M, some function a of time satisfying
a(0) =1, and some 1-parameter family of diffeomorphisms {¢;:t € T}
generated by vector fields —V (t) with the property that their dual 1-
forms are closed:

ViV =V;Vi. (2.2)

In this case, we say that (M™, g (t)) flows along V.
It is not obvious that the representation (2.1) is unique, because

the family {¢;} may contain homotheties. We put equation (2.1) in a
canonical form as follows:
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Lemma 3 Suppose g is a homothetic Ricci soliton having the form
(2.1). Let a = a(0), and let {¢y:t € T} be the l-parameter family
of diffeomorphisms generated by the vector fields

with ¥y = idaq. Then
g (1) =1 +at) (¥ig) () -

Proof. Let G (t) be a smooth 1-parameter family of metrics, and let
{6;} be a family of diffeomorphisms generated by vector fields —W ().
Then we have

5O = 5| (0.6 (t+)
— 0 (Ho®) + 5| [0 o0 Gi6 )]
- (%G (t)) Loy wiy BEG (1)
_ g (%G (t) — Ly G (t)) . (2.3)
Applying (2.3) with G (t) = a(t) § and 6, = ¢, we get
Re(9) = —3 0 g () = ~3og+ o6 (Lvipd) . (24)

Now define
g (1) = (L+at) (¥19) -
) =

Applying (2.3) with G (t) = (1 + at) § and 6, = 14, we obtain

0
5530 =i (49— £_1_yo) (1 +a1)9)) = ¥} (a9 — Lve)d)

But evaluating equation (2.4) at ¢ = 0 shows that

. AU .
Re(g) = Re (9)|t:0 = —§ag + §£V(0)9-

Hence

0 .

579 (t) = 47 (=2Re(9)) = —2Re (3 (1))
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So g (t) is a solution of the Ricci flow with g (0) =
of the Ricci flow are unique, it follows that g (t)
both solutions exist. q.e.d.

The gist of the lemma is that in (2.1) and (2.4) we may assume
a (t) = a is independent of ¢, so that a (t) = 1+at and a (¢) V (t) = V (0).

From the point of view of motivating the differential Harnack in-
equality of Li-Yau type, Hamilton considered the extreme case for the
function a (¢) in the definition of Ricci soliton. In particular, he was in-
terested in the case where the initial metric g (0) is singular (such as the
metric of a cone) and the metric g (¢t) expands as ¢ increases. Formally,
this corresponds to letting @ = a (0) tend to infinity,

g (0). Since solutions
= ¢ (t) for as long as

. a . a 1
lim — = lim — = —,
a—ocoa  a—oo 14 at t

(2.5)
and motivates the following definition:

Definition 4 A solution (M", g (t)) of the Ricci flow

0
ag = —-2Rc

on a time interval (0,Q) containing 1 is called an expanding Ricci soli-
ton flowing along V' if

g (1) =1t(6;9) () (2.6)

for some fized metric G on M and some 1-parameter family of diffeo-
morphisms {0y : t € (0,Q)} such that 6, = idap and the dual 1-forms of
the vector fields —V (t) which generate 6, are closed.

Differentiating (2.6) leads to the equation

1
Gijs (2.7)

Rij =ViVj — 5

Notice that (2.7) can be obtained formally by

where V () = 1V (1).
t (2.5) in equation (2.4).

passing to the limi

Now observe that ¢t g (t) = 6} (g (1)) evolves by diffeomorphisms.
This motivates us to make the following transformation for any solution
g (t) to the Ricci flow:

9(t) = g (t).
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To get a nice equation for g, we change the time variable by ¢ = Int.
Then g (%) is a solution to the equation

0 _ _ 1_
5% = 72 (Rij + 59@')

on the time interval (—oo, In ) containing ¢ = 0. We call this equation
the Ricci flow with cosmological constant 1/2. More generally, there is
the following:

Definition 5 We say that (M™, g (t)) is a solution of the Ricci flow
with cosmological term p (t) € R on a time interval T if

0 _ = _
7% = —2 (Rij + ugij) - (2.8)

A solution of the Ricci flow with cosmological constant p = 1/2 is
an expanding Ricci soliton

10 1
5% T R;j =V;V; — 57 9ii
if and only if g () = e fg (ef) satisfies
10 _ _ 1_ -
~557%i = R;; + 39 = ViV, (2.9)

where V; (£) = Vj (1), hence if and only if g (?) is a steady Ricci soliton.
Note that V¥ (t) = g7% (£) V; () = tV* (t) = V¥ (1) is independent of ¢,

so that

%V’“ =0. (2.10)

Taking the divergence of (2.9), using (2.2), and commuting derivatives,
we compute

ij = ?ﬁ’ = ?J?ZV” + RjkV’“ = ?]- (R + g) + R]kf/’“

DN | =

and thus obtain the following useful identities, valid when p = %:

VR=AV =-Rec (V). (2.11)
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2.2 The space-time connection for the Ricci flow
rescaled by a cosmological term

In this section, we show that the definition of the space-time connection
for the Ricci flow in [4] may be extended to the case where there is a
cosmological term g (¢) in the flow equation. Motivated by the discus-
sion in the previous section, we are mainly interested in the case y = %
Since the relevant computations are modifications of those in [4], we
shall omit many details of the proofs.
Let M = M" x T and denote the time coordinate by 2 = . Recall

that the degenerate space-time metric on T*M is defined by

i . | og¥ ifi,g>1

9]*{() iti=0orj=0 - (2.12)
Modifying the definition in [4], we define a symmetric space-time con-
nection V by specifying its Christoffel symbols to be

% = — (B} + wof) (C2)

- 1,

r&__—iv@R (C3)

Fgo =M (C4)

. =19%=o, (C5)
©J +0

where 4,5,k > 1.

Lemma 6 The connection V is compatible with the degenerate metric
g: foralli, 5,k >0, o
Vii* = 0.

Proof. This is a straightforward computation using the identity
Vig* = 0;g7* + T2 g% + T},

with formulas (C1), (C2), and (C5). q.e.d.
Given a time-dependent vector field W (¢) on M, we associate to it
the space-time vector field

W®¢%+W@.

In local coordinates, W° =1 and W7 = W7 if j > 1.
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Lemma 7 The formulas for the covariant derwative of the vector field
W are

VW = VW7~ (R + o] ) (CW1)
N N . N 1.

I = Wi — J J k_ ZxgJ
Vol = W — (B + ) W — JV/R (CW2)
VoW =—pu (CW3)
VWl =0 (CW4)

foralli,j,k > 1.

Proof. This follows from V,W7 = 9,WJ + > op=t f‘ngp + T4, WO
and all of the formulas (C1)-(C5). q.e.d.

We can now make the important observation that the space-time
of a steady soliton flowing along V has a geometric product structure.
Recall that a parallel vector field on a Riemannian manifold A gives a
local splitting of N as the product of an open interval with an (n — 1)-
dimensional manifold P. Hence the observation follows from:

Proposition 8 If §(t) is a steady soliton of the Ricci flow with cosmo-
logical constant p = % flowing along the vector fields V (t), then

for alli,5 > 0. That is, the space-time vector field etV is parallel.

Proof. If i = j = 0, the formula follows from (CW3). For the case
i =0, j > 1, we apply equations (CW2), (2.10), and (2.11). Ifi > 1 and
j =0, the formula follows from (CW4). And for the case i > 1, j > 1,
we apply (CW1) and (2.9). q.e.d.

2.2.1 The Riemann curvature tensor

Denote the Riemann curvature tensor of the space-time connection \v,
by

R(X,V)Z2=VgVeZ-VyViZ-VigpZ.  (213)
Wi

Since > s parallel and R(X , )7) Zisa tensor, we immediately get:
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Corollary 9 If g (f) is a steady soliton flowing along V (t) with p = 3,
then L

R (X,Y) V=0 (2.14)
for all X and Y.

We shall see in the next section how this relates to the derivation of
the Li-Yau-Hamilton quadratic in §3 of [9].

The formulas for the space-time Riemann curvature tensor are as
follows:

Proposition 10 Ifi,j,k,¢ > 1 and a,b,c > 0, then Rm satisfies:

Rfjk - Rfjk (R1)
Rijo = V;R; ~ ViR, (R2a)
Rijr = V' Ry~ ViR (R2b)
I T T

Rio = iR~ 5VVR- BB, —uRE+ ol (R)
Rgbc = 0' (R4:)

Remark 11 The standard asymmetries satisfied by the curvature of
any connection imply in particular that

Ry, + Rigp =0
Ry + Ry = 0.
Because V is torsion-free, the first and second Bianchi identities take
the form:
Rl + R, +RL = Bl
ijk + jki + kij ( )
ViR + ViR + ViR, =0 (B2)
foralli,j,k,0,m > 0.

Remark 12 Using the evolution equation

9 ., o _
6—5Rf = AR! +2R{, R™ + 2uR!,
we may rewrite (R3) as

~ - 1o —, = _, = _ _ d
Riyy = AR — JViV'R + 2R{, R™ — RIR) + uR{ + 3.
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The identities in Proposition (10) are proved in a manner similar to
Theorem 2.2 and 3.1 of [4], which give the corresponding equations for
the case p = 0.

The components of the Ricci tensor are given by Rjk i OR

n R

z]k -

i;x- Hence tracing (as in Corollary 2.4 of [4]) gives the following:

Corollary 13 The Ricci tensor satisfies the identities:

Rz'j = Rij (RCl)
. 1. _

Roj = 5V;R (Re2)
= 10 5 du

As in Lemma 3.3 of [4], we notice that:

Remark 14 The covariant derivatives of the Ricci tensor obey the sym-
metries

R = 0 (CRel)
Roo 0 (CRc2)
foralli,5 > 1.
Proof. Using (Rc2) and (C2), we find that
ViRjo = ViV R+ R}; + uRij = V; Ry,
which proves equation (CRcl). Using (Rc2) and (Re3), we get

(1823) o R

( Vi R) + T Ryo + Ty Rip + To Rio

ViRoo — VoRio

=V,
9
ot

where p is summed from 1 to n. Equation (CRc2) then follows by
applying formulas (C2)—(C4) and (Rcl)—(Re3). q.e.d.
Generalizing the definition in [4], we have the following:

Definition 15 A degenerate metric and compatible connection (g, @)
satisfy the Ricci flow with cosmological term p if for all i,5,k > 0,

= ~M ( Vi Rjg VjRM + @g}?i]’) . (2.15)
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Proposition 16 The pair (g},@) satisfies the Ricci flow with cosmo-

logical term p.

Proof. Ifi,j,k > 1, the standard formula

0 - 1 _ (0 - (0 - (0
—_Pk = __ke ; —__ 5 5 —__' — —__"
oF i 29 [Vz (ath) +V; <8tgz€) Vi <6tgz]>:|
shows that (2.15) holds. If £ = 0, the result is trivial by equations (C4)

and (C5). If i = 0 and j,k > 1, the observation fij’; = f’gpf%g and
identity (CRcl) together imply that

-~ . . .~ 9 9 _
—VoRY — ViR + V¥R = —VoRS = —a—t_R;? = a—_r’gj.

Ifi =3 =0 and k > 1, the observation f‘gof%’p“ = f'gpf%g and identity
(CRc2) imply
S =g = -~ 0 (1o~ 0 =~
—2VRE + VFRyy = —VoRE = ~ 5 (§ka> = 8—];’50.
q.e.d.

Lemma 17 If u is constant, the space-time curvature tensor satisfies
the divergence identity

FIV Ry = Roji (2.16)

between components of the (2,1)-tensor on the LHS and components of
the (3,1)-tensor on the RHS.

Proof. If j > 1 and k > 1, this is just the contracted second Bianchi
identity
g Pl S > Sl
gququjk == VpRpjk =V R]k - VkR]
If5 > 1, k=0, and p is constant, this follows from Remark 12 and the
calculation

. o 1. _,_ o
§PIV,RE, = —AR + 5vijR — 2RPIRE

_ 5D Bl 50
qj0 = ipg + IRy — ul;.

If j =0 and k > 1, one computes

IV Ry, = VPVLRE — VPV Ry + RPM R, = 2RPMRY,, = 0.
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Finally, if j = k = 0, one obtains

qu)

IV, Ry = VPAR — AV‘R + 297 (Riym
— %RjﬁpR — quvapq
=0

by a straightforward calculation. (See also Lemma 2.2 and the remark
after it in [5]). q.e.d.

Remark 18 Tracing formula (2.16) and applying (B2) yields
R, U I B
R = g §""VyRyy = "V Ry = SV R = V'R,
in agreement with (Rc2).

The evolution equation for the space-time curvature tensor is given
by:

Proposition 19 If u is constant, then
VoRY, = ARY, +2 (B, — B, — BY, + BS ) + 2uRt,
0145k zyk ijk jik jki ikj 12 1jk?

where

[ GPIR™
Bijk - szngqm

Proof. This formula may be proved along the lines of [8]. Instead,
we give an alternate proof using the space-time Bianchi and divergence
identities. We note that taking the covariant derivative of identity (2.16)
yields

ViR = Vs ( 4 quk) TR -

So by using (B2), substituting, and cancelling terms, we directly obtain
601'7‘32% = 6'jok -V 'Rgz'k
(v VRl — V¥ quk) PR+ TR

Pl
Rjgm — Rzpm qu)
— g Riijqmlc + 2HRij1c,

- AR’L]/C + 29;01] (Rzpk:
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where A = gP‘I@Nq is the space-time Laplacian. Then using (B1) and

the identity B{Zj P —§PR Eimq, we conclude

7 DJi
@oﬁfjk = ARfjk + QBfkj - 2]§fki
+ g (Rpji - sz‘j) (Riqm - Rimq) + 2uR,
= ARG +2 (Bl - Bl — Bly+ Bl ) +2uBY,
q.e.d.

2.2.2 Space-time curvature as a bilinear form

We shall find it convenient to regard the curvature tensor as type (4,0) .
Since the space-time metric is degenerate, we lower indices as follows:

ghY, ife>1
Rijue = { —grphly, if0=0andk>1 . (2.17)
0 if 0=k=0.

We may now consider Rm to be a symmetric quadratic form on A2TM
by defining
n
Rm (5,7) = 3 RipeST%. (2.18)
1,7,k =0
Note that this differs slightly from [4], where Rm was regarded as a
tensor of type (2,2). o
Setting Bjjre = —gqug;ijqmg, we restate Lemma 19 in the form:

Corollary 20 If u is constant, then
VoRijue = ARjjke+2 (Bijkz — Bjike — Bjic + Bikjé) + 24 Rije. (2-19)
Recall that the degenerate metric g induces an inner product and
Lie bracket on A2T* M as follows:
<ST> = GG 8, T (2.20)

[5.7] = (ST ~ Tuis)- (2:21)

(Compare formulas (10) and (11) in [4].) The structure constants C’fjb’Cd
defined by
C’fjb’Cddxi Adx? = [dx“ A dxb, dz€ A dmd]
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for0<a<b<n, 0<c<d<nand 0<i<j<n are then given by
Cab cd — 5a5d ~bc (Sgébgad
i (2] )
In terms of the natural isomorphism between A2T* M and A2T*M &
ALT* M, formula (2.21) corresponds to

XaV,Y oW =[X,Y]& (V.Y — W.X),

where J denotes the interior product. Analogous to [9] and the extension
in [4], we define a symmetric bilinear operator # on A2T* M @ A2°T* M
by

(F#G)Z’jkz abchpqrsCab’quCd rs,

and adopt the notational convenience F' i# F#F. We also define the
square of an element in A?T* M ® A2T* M by

9 . ~adsb
Fiike = 3" Fijab Feare-

With these definitions, following [9] and [4], we find that (2.19) takes
the form:

Lemma 21 If u is constant, then
VoRijee = ARijre + Rl + Rf;u + 20 Rijie. (2.22)

We omit the long but straightforward computations.

2.3 Hamilton’s quadratic for the Ricci flow

As was remarked in [4], the results above give an explanation for the
surprising identities observed by Hamilton in §14 of [13]. Here, we shall
exhibit a correspondence between the machinery Hamilton uses to prove
his tensor inequality and the geometric structure of space-time, in order
to show that his quadratic and the assumptions made in its derivation
arise very naturally in the space-time context. A similar but less precise
correspondence appeared earlier in [4].

Recall that Hamilton proved that for any 2-form U and 1-form W
on a complete solution (M", g (t)) of the Ricci flow with non-negative
curvature operator, the quadratic

Z=Z(UW)= MWW + 2P UWF + Ry UU*  (2.23)
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is non-negative at all positive times, where R;;r, = gngZ?k,

1 1
Mij = ARij = 5ViVjR + 2Ripg; R — Ry, R; + 57 s (2.24)

and
Pijr = ViR — VjRy. (2.25)

We shall now relate Hamilton’s proof to our construction. In §2 of
[11], tensors of type (7, s) on a Riemannian manifold (M, g) are regarded
as GL (n,R)-invariant maps from the linear frame bundle GL (M) to
R"™*" . For instance, if P € M and Y = (Yi|p,...,Yy|p) € GL (M)
is given by Y, = 3’ d/0z" in a chart {:c’} at P, a 1-form # may be
identified with the system of component functions 6, = 6(Y,) it in-
duces on GL (M). Regarding the Levi-Civita connection of (M, g) as a
GL (n,R)-invariant choice of horizontal subspace for each Ty GL (M),
Hamilton takes space-like derivatives by means of the unique horizontal
lift D, of Y, at Y € GL (M). Hamilton then identifies the vertical vec-
tor field V2 with the differential of the map Y, + yg (y‘l)? Y,; namely!

-0
va — (3 — .
b =Y Byl
Note that V§ acts on a covariant tensor by

ngcd...z = 5gde...z + échb...z +---+ échd...b- (2-26)

For a solution (M, g(t)) to the Ricci flow on an interval Z, one con-
siders the bundle GL (M) xZ -+ M = M X T and the sub-bundle of

orthonormal frames O (M) = Usez (O (M, g () ,t) — M. Hamilton

takes time-like derivatives by means of a vector field D; on GL (M) xZ
defined by

)
Dy = o+ Rapg" Ve . (2.27)

Dy is tangent to O (M), because
Dtgab =0. (228)

The geometric structure of space-time reveals why this construction is
natural. Indeed, definition (2.27) corresponds to (C2) in the definition of

"Hamilton writes V¥ for what we denote V2.
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the space-time connection V for the Ricci flow without rescaling (n=0),
because

Vo= a%‘ — Vi,
when acting on covariant tensors. Property (2.28) corresponds to the
compatibility of V with the space-time metric § (Lemma, 6).

Now suppose (M, g (t)) is a homothetically expanding soliton flow-
ing along a gradient vector field V. (See Definition 4, and recall that
(M, G (1)) is then a steady Ricci soliton flowing along V = €!V.) In §3
of [11], such a solution is described by the equation

1
DoVy = DyV, £ Ryp + o7 Jab- (2.29)

Here and in what follows, we use the symbol £ to denote an identity that
holds for an expanding gradient soliton. By applying formula (CW1) to
V, we note that condition (2.29) holds if and only if for all 7, > 1, one
has
ViVi =0.

Hamilton next defines the quadratic Z in terms of the tensors M,
P, and Rm. (Recall (2.23)—(2.25) and note that our sign convention for
the Riemann curvature tensor is opposite Hamilton’s.) In analogy with
Theorem 2.2 of [4], we apply Proposition 10 with g = 1/2 to observe
that these also correspond to natural space-time objects:

Lemma 22 Let (M, g (t)) be a solution of the Ricci flow. Set t =Int
and g (t) = %g (t). Then fori,j,k,£ > 1, one has

Rijke = €' Rijie (2.30)
Pyj = Rojre = Rieoj (2.31)
M;o = e~ Rioor. (2.32)

Thus we arrive at the key observation that the LYH quadratic may be
identified with the space-time curvature tensor:

n
Z=¢ > RynT9T%,
i:j’kz‘e:()

where the space-time contravariant 2-tensor T is defined in terms of
the natural isomorphism A2T*M = A2T*M & A'T* M by T =U®
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(e_fW/Q). In components i,7 > 1,
T =Y (2.33)

s - 1 - . 1 .
0j _ _ g0 _ — —tyyd — — 1
T T 2@ w 2tW' (2.34)

(See also Corollary 2.3 of [4]; a key difference from that paper is that
taking p = % accounts for the term Q%Rig in M.)
Differentiating the expanding gradient soliton equation (2.29), Hamil-

ton obtains the following two relations:

Pupe + R Va £ 0 (2:35)
My + Py Ve £0. (2.36)

Together, these equations prove the Li-Yau-Hamilton inequality is sharp.
Indeed, if W is arbitrary and one sets Uy, = % (VoWy — VuW,,), a straight-
forward computation gives Z (U, W) £ 0. This fact can be interpreted
using the result of Corollary 9 that

R, VE 20 (2.37)

holds for all ¢,7,¢ > 0:

Lemma 23 The identities (2.35) and (2.36) are equivalent to the fact
that the space-time Riemannian curvature tensor Rm vanishes in the
direction of the parallel space-time vector field et/?V when pu = 1/2.

Proof. Ifi,5,¢ > 1, Lemma 22 implies that
RijpeVF = —€/? (Pijz + Rijszk>

and . B .
Rojkgvk = —€3t/2 (Mjé + Pkljvk) .

Since ﬁ%k = 0 for all 4, j, k, it is clear that (2.37) holds if and only if
both (2.35) and (2.36) do. q.e.d.

The evolution equations satisfied by the coefficients of Hamilton’s
quadratic are derived in Lemmas 4.2, 4.3, and 4.4 of [11]. Written in

Hamilton’s notation, they are

(Dt - A)]%abcd = 2(Babcd — Babde + Bacbhd — Badbc)a (2'38)
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(Dt — &) Pape = —2Rae Dy Ropee (2.39)
+ 2 (Radbe Paec + Radce Pave + Rodce Pade)
and
(D¢ — A)Map = 2R g (DePyap + DePipa) + 2RachaMea (2.40)
+ 2P;caPoca — 4Pucd Pode + 2RcqRee Radbe — %Raba

where Bypeq = RaepfReedr- In §2.5, we prove the following:

Proposition 24 The evolution equations (2.38), (2.39), and (2.40) are
equivalent to the evolution equation

VoRijke = AR;jpe + 2 (Bz'jkk — Bjike — Bjpic + Bikj@) + Rijre  (2.41)
satisfied by Rm when p=1/2.

In computing the evolution of the quadratic Z, Hamilton makes the
following assumptions on the 2-form U and the 1-form W at a given
point:

1
(Dt - A) Wa = ZWa (Al)
(Dy — A)Ugp =0 (A2)
DaWy =0 (A3)
1 1
D,Up. = 5 (Rach - Rach) + 4_t (gach - gach) . (A4)

(See the hypotheses in Theorem 4.1 of [11], and note that equation
(A4) is motivated by the fact that it holds on a soliton if (A3) holds
and U = V AW.) We shall now demonstrate that the four assumptions
above are also very natural from the space-time perspective. Indeed,
equations (A1)-(A4) hold at a point in space-time if and only if e?T%
satisfies the heat equation and is parallel in space-like directions at that
point:

Lemma 25 If u = 1/2, assumptions (A1)-(A4) are equivalent to
(% A+ 1) Tii =0 (2.42)
VT =0, (2.43)

foralli,j >0 and k > 1.
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Proof. For i,j,k > 1, we use (C1), (C2), (2.33), (2.34), and the
fact that Rfc = tRfg to compute
T = VU 4 P T 1 T
. 1.\ 1. . 01 N1
= W [tR* + 25 ) =W tR) + —§7 ) —w.
Hence (2.43) is valid for all 7,5,k > 1 if and only if (A4) holds. For
1 =0 but j,k > 1, we have
U | .
TY = — g,
Vi 2thW
So (2.43) is valid for ij = 0 and all £ > 1 if and only if (A3) holds.
Similarly, since V7% = LV W7 and ATY = gr1v,V 7% = JAWY,
we compute that

oot \ 2t

1 ) 1 )
— ZAWI + —_WJ
SAW + =W

= X ~ 07 1. s i
(Vo—A-l—l) TOJ—Q( W7)+P80TOJ+F%pTOp

1/ . . 1.
— | =-WJ — ROWP — ) W
2((%W RIWP — AW tW).

It follows easily that (2.42) is valid for ij = 0 if and only if (A1) holds.
Finally, we use (C3) to calculate

. O e 5
(Vo+1) 7% = U+ T U + Do T + T, U + D31 + UV
_ (9P _ pipmi _ pigin) _ wivip o Lirioi
_t(aU ~ R,UP — RU™ | — JW/V'R + ;W'VIR.
Then noting that for ¢, > 1,
1

T = VU 4 L (RJW — ByW) + o (6w - 8yw)

we compute
AT = 157, 7
VYU + 59, (R~ Ryw )

= tgP? o o S A
+£:V, (8 = GWI) + TV 7% + [0, 0

—¢ [AU” +RIVPW! — RyVPW 4 o (W'VIR WJV’R)}

+ = (VW' = V'WY)

N =
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and collect terms to obtain

0

(% - A+ 1) TV = ¢ [EUU — AUY — R)UY — Rg;Uip]

. 1 ; . ) 1 . .
(e 4 L) v (e L) s

So if (A3) holds, then (2.42) is valid for 4,5 > 1 if and only if (A2) holds.
q.e.d.

2.4 A generalized tensor maximum principle

In order to utilize space-time methods fully in investigating potential
Li-Yau-Hamilton quadratics for the Ricci flow, one needs a version of
the parabolic maximum principle for equations such as (2.22) and (3.9)
Accordingly, we now derive a generalization of the tensor maximum
principle originally proved in [8]. We begin with the observation that
any smooth family {g(¢):0 <t < Q} of Riemannian metrics on M"
induces a nondegenerate metric § on M x [0,2) given in coordinates
(8/8t =20 z1,... ,x”) by

. fgy if1<ii<n
95 = 6y ifi=0o0rj=0.

We denote the Levi-Civita connection of § by V.

Proposition 26 Let g (t) be a smooth 1-parameter family of complete
metrics on M"™, indezed by t € [0,Q). Let M = M x[0,Q) and let § be

the degenerate metric defined on T* M by

G = g7 ifif1<ij<n
10 ifi=0orj—0.
Let V be a compatible connection (V;37F = 0), and let Q denote the

space of symmetric bilinear forms on a tensor bundle X over M. Sup-
pose QQ € Q 1is a solution of the reaction-diffusion equation

VoQ =AQ +@(Q), (2.44)

where ® : Q — Q is a (possibly nonlinear) locally Lipschitz map which
satisfies the null eigenvector condition that @ (P) (X,X) > 0 at any
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A

g
and the Lipschitz constant for ® are bounded on any

point where P (X, ) vanishes for P € Q and X € X. Assume ‘@ -V
v(Vv-v)|,
[V (¥-9)|,; ond e
subset M x [0,n] C M. If M is not compact, assume also that there

ezists p : M — [1,00) with p~1 ([1,5]) compact for every s € [1,00)
and such that |Vp|, and |Ap| are bounded on M x [0,n]. If @ > 0 on

M x {0}. then @ >0 on M.

Proof. The metric ¢ induces an inner product on A in the usual
way; we shall abuse notation by writing ¢ (X,Y) for X, Y € X. If M is
compact, take p = 1, and otherwise let p : M= [1,00) be the function
in the statement of the theorem. (By [7] and Lemma 5.1 of [11], such
a function always exists if the time derivatives dg/dt of g and OT'/0t
of the Levi-Civita connection of g are bounded, and if M has positive
sectional curvature.)

By considering translates in time, it will suffice to prove there is
1 > 0 such that for every € > 0, the quadratic form Q is strictly positive
on M x [0,7n], where

Q) =Q(x,t)+e(m+1t)p(x)§(z,1).

Suppose Q does not remain strictly positive, and let ¢, € [0,7] denote
the infimum of all ¢ such that Q (V,Y) o 0 for some Y € X and
,t

r € M with [Y|; =1 at (z,t). We claim t70 > 0. If not, there will be a
sequence of compact sets K; exhausting M, points z; € K;\K;_1, and
times ¢; \, to = 0 such that the first zero of Q on K; x [0, 7] occurs at
(x,t5). Since @ > 0 on M x {0} and p (x;) = oo if M is not compact,
this is impossible.
By the null eigenvector assumption,
Q)|  >o.

(z,t0) -
Define a tensor field X in a space-time neighborhood O of (z,ty) by
taking X =Y at (z,t9) and extending X by parallel transport along
radial geodesics with respect to the connection V. (It suffices to ex-
tend X first radially along all V-geodesics which start tangent to the
hypersurface M x {ty}, and then along any curve with tangent 9/0t at
(x,tp).) Notice that all symmetric space-like second covariant deriva-
tives of X vanish at (z,%p). (Compare §4 of [9].) Indeed, with respect
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to a g-orthonormal frame {ey = 9/, ey, ..., ey}, one observes that for
1=1,...,n,

Ve, Ve, X

R (VeX) - Vg, X =0-0.

Hence for any P € Q, we compute at (z,tp) that
(ViViP)(X, X) +4(ViP)(X,
L2P(VX, Y, X) + 2P( v
= (AP)(X,X).

X)

X,V;X
v,X)

A(P(X,X)) =gy [

Now consider the function F' defined in O by

F(y,t) = Q(X,X) "

Even though g may not be compatible with the connection V, we still
have |X|; > 1/2 in a possibly smaller neighborhood O" C O. Hence F
attains its minimum in O’ N M x [0,%¢] at (z,%p), where we therefore
have

0> 27 = (V@) (X,X),

and

0= %F - (ﬁiQ) (X, X)

fori=1,...,n, and

o 0*F -, OF <
< gy —__ _Th_—_ | =AF.
0<9 (5@"’8:5] L (9:5’“) AF

To finish the proof, observe that there are constants C; and Cy
V-V _and ‘@(@—@)‘AOHMX
g g

depending only on the bounds for
[0,7] such that

2 (%g) (X,X)‘ >0 |X

2 — —
(z,t0) =G

and .

2 (34) (x|
There is C3 depending only on the Lipschitz constant of & on M x [0, 7]
such that

— 3 (Q) (X, X)|(gs) < 2(Q) (X, X)=2(Q) (X, X) < Csen|X[; = enCs,

<G |X|} = Co.

z,to
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and there is Cy depending only on the bounds for |Ap|, [Vp|,, and
‘@ - @‘ such that
g

p(A9) (X, X)
(AF) @10) = (3Q) (X, X) 4 e t10) | 42 (%) (X X)
+(Ap) § (X, X)
< (AQ) (X, X) +en(pCa+ Cy).

Combining these estimates with equation (2.44), we conclude that at
(.I‘,t()),

0

v
S|l

F

Il
—~
<:

0Q) (X, X) +2(n+to) p (Vog) (X, X) +pj (X, X)

Q) (X, X) + @ (Q) (X, X) += (n+10) p (Vg ) (X, X) +¢p
F —en(pCy + Cy) — enCs — enpCy +ep
elp(L=n(C1+C2)) —n(Cs+ Cq)].

I
Dy ——
b

v v

Because p > 1 and the constants C; cannot increase if n decreases,
choosing 1 > 0 sufficiently small gives a contradiction. So ) remains
strictly positive on M x [0,7], and the result follows by letting ¢ \, 0.
q.e.d.

2.5 Evolution equations relating to Hamilton’s
quadratic

This section is devoted to the following:

Proof of Proposition 24. Assume p = 1/2, and denote the RHS
of (2.19) by Fijke- Lemma 22 implies that the following identities are
valid for all ¢, 7, k, ¢ > 1:

Bijko = —GP" Ry, Rigro = tg"' Ry, Pygr (2.45)
Bigoe = —§" RoRogre = —t°¢"19"* Pipr Prsg (2.46)
Biow = — 3" RyigRegro = t°g""g"* Pipr Pyes (2.47)
Bino = ="' Ry Rogro = —t>gPI Ry My, (2.48)
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Thus for ¢, ¢ > 1, we have
Fiooe = ARjoo¢ + 2 (2Biooe — Boioe — Boow) + Rigoe
= A1%1'002 + 2t29pqgrs [RipMqu - Pi;m“ (2P€5q + Pqﬁs)] + tM;y.
On the other hand, we use (C2)-(C4) with Lemma 22 to compute di-

rectly that

L 9 - L . o .
VoRiooe = B—ERiooz — I Rpooe — T, Rioop — I (Rz'poe + Rz'Opz)

0
=ty (tMie) + (ER] + pdy) (tMpe) + (LR + pdy) (1 Mip)

1
+ (itZVpR> (Ppie — Popi) + 24 (¢ M)

0 1

=t [@Mw + R Mpe + Ry Mip + 5 (VPR) (Ppic + szz‘)}
+ 3tM;,.

In the same way, we compute for ¢, m < 1 that

VoRiooe =t (VqMig + R Pri¢ + R Progi) + 11 (Pyi + Pyei)

and
= A p
VqRimOK = qumif + RzRimM + ?Rimqf-

Then by using the divergence identity

1
ViPyie = Mig — RM Ripge — o Rie,

we can write
ARigor = §"VpV ¢ Riooe
= t*V? (Vg Mi¢ + Ry Pric + Ry Prnti) + V' (Pyie + Py
+ tgpq (tR;n + Ma;n) (VquiZ + RzRimTf + %Rimqﬁ)
+ tgpq (tR;n + Ma;n) (VquZi + RzRirmf + %Riqmﬁ)

t2
= ?AM;; + 3 (VIR) (Pyi¢ + Pyui) + 2t* RPN, (Pyie + Pyei)

1
+ 2t* RP R™ R;p00 + 2t Mg — 5 Rie-
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Cancelling terms yields

-~ . 0
VoRiooe = ARjgor + (E - A) Mg — 2t RPN, (Pyi¢ + Pyes)

1
+t* (RP My + RYM, — 2RE, R™ Ripge) + tMyg + 5 Rie-

Recalling (2.26) and (2.27), we conclude that the special case VoRigop =
F ioo¢ of equation (2.19) holds if and only if

0

—M;¢ + RV My + RV M,

0
DiMig = — M + RI VY My =

ot ot
= AM;, + 2RP1V,, (qu + qufi) +2RY R™ R;pq0
1
+ 2gpqgrs [RipMqu - P)ipr (2P€sq + Pqﬂs)] - ﬁRiZa

hence if and only if equation (2.40) holds.
Now if 4,7,k > 1, identities (2.45)—(2.48) let us write
Fijko = ARjjko + 2tgP? (R} Pakr — RyjiPakr — Ry Pyir + Ripip Pojr)
+ Pijk
= ARijro + 2tg™ (RyijPyrk — RyjiPyir + Rpix Pajr) + P
On the other hand, (C2)—(C4) and Lemma 22 imply that
_ 9 - L L L o
VoRijro = a_t—Rz'jkO — T4 Rpjko — Lo Ripko — Lo Rigpo — Lo Rijip
0 1
=t <§PZ~,~;c + R} Pyji + R} Pipy + R Pijp + iRijkpva>
+ 2Pk
and
~ ~ 1
VyRijko = VPijk — ThoRijkp = Vo Piji. + Ry Rijip + o Tidka-
Noticing that VIR;;r, = Pj;jx by the second Bianchi identity, we write
the diffusion term in the form

ARz‘j/co = tgpqﬁpﬁqéijko

1
=1tV1? (quijk + RgRijkp + 2—tRijkq>
1
+ g™ (tR;n + 5(5?) (VqRijkm)

1
=t (APijk + §Rijk:pva + QRQVqRijkp> + Pij
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and cancel terms to obtain

-~ o 0

VoRijro = ARijkO +1 [(a — A) Py + Rg Vg Py — QRJ%V'IR%IC
+ Piji-

Thus the special case ﬁoﬁijko = Fijko of equation (2.19) holds if and

only if

DyPyj, = AP;jy, + 2RIV (RY + 2971 (Rpyi; Pyrk — Ry Pyir + Riyir Pyjr)

hence if and only if (2.39) holds.
Finally, the equivalence of (2.38) and the case 14, j,k,¢ > 1 of (2.19)
is clear when we observe that

1
Fijke = ARijre + 2 (Bijke — Bjike — Bjrie + Bikje) + ;Rz‘ju
and

- = 0 (1 2 1
VoRijke =t (sz‘ju> + Ry Vg Rijee + S Rijee = DeRijre + 5 Rije.

q.e.d.



Chapter 3

Generalized space-time
connections

In this section, we derive new matrix LYH inequalities for the Ricci flow
by generalizing the definition of the space-time connection in § 2.

So let (M™, g (t)) be a solution of the Ricci flow rescaled by a cos-
mological constant u:

0

579 = 2 (Re + p3) -

Consider the family of symmetric connections V defined on space-time

(M, g) by

0y, =T (GC1)
T = - (RE + ot + a}) (GC2)
Thy = — (%w + B’“) (GC3)
[ =~ (u+0) (GC4)
Ty =% =0, (GC5)

for i, j,k > 1, where A is a tensor of type (1,1), B is a vector field, and C
is a scalar function. We saw in §2 that the space-time connection V has
a number of useful and interesting properties when A = B = C = 0.
Our goal here is to investigate what conditions on A, B, and C are
necessary and sufficient for V to retain certain desirable characteristics.
In particular, we determine which connections of this form are both

31
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compatible with the space-time metric and satisfy the Ricci flow for
degenerate metrics. Such space-time connections are worth studying,
because their curvatures satisfy parabolic evolution equations and thus
furnish Li-Yau—Hamilton quadratics for the Ricci flow.

Define a (2, 0)-tensor A by

Aij = A7 Gp;-
Our first observation is that V is both torsion-free and compatible with
g exactly when A is a 2-form:

Lemma 27 The metric g is parallel with respect to the symmetric con-

nection V, o
Vig* =0,
if and only if (GC1)-(GC5) hold, where A is a 2-form,
A%gpk + Alggjp =0, (3.1)

and there are no restrictions on either B or C.
Proof. For i, j, k > 1, the equation
0= Vi7" = 8ig"* + T " + T5,5""

is equivalent to

since V is the unique torsion-free connection compatible with g; this is
(GC1). Assuming (GC2), the equation

0= Vog'* = og’* + T, 5" +Th 7
is valid for j,k > 1 if and only if
i —pk k=jp _
A)gP" + Apg’P = 0.

This says that when we lower an index, Aij = A:f gpj is a 2-form. The
equation B . .

0= sz]Ok — 81g0k + F?pgpk + Fécpgop
is valid for ¢ > 0 and k& > 1 if and only if

=0

holds for all i > 0 and p > 1; this is (GC5). The identity V;g% is
satisfied automatically for all ¢ > 0. q.e.d.

Hence by lowering indices, we may regard A as a 2-form, B; = BPg,,;
as a l-form, and C as a 0-form.
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3.1 The Riemann curvature tensor

The space-time Riemann curvature tensor is defined by (2.13); in com-
ponents, one has

R = 0,T%, — 0T + TTs, — TRTS, .. (3.2)

By definition, we have the asymmetry R’fjk = —R%,. The remaining

jik*
formulas are as follows:

Proposition 28 Ifi,j,k, £ > 1 and a,b,c > 0, then Rm satisfies:

Rzgk: Rzyk (GRl)
Ry = VRl — ViR! + VAL — V;AS (GR2a)
RO]k =Vt Rjk — ?kRg + ﬁin (GR2D)
0 B
Rijo = =5z R+ (u = C) Rj + 5V, V'R + RI' Ry, (GR3)
0 _ _
— 2 Aj + AT AL + (= C) Aj + RV AL, + AT Ry,
+V;B" — uCés.
RO, =0. (GR4)

Proof. Identities (GR1) and (GR4) follow easily from (3.2). To
derive (GR2a), we use (GC2) to compute

RYo=0,T% + T ;TS —

~ Y, (Rf +Aff) v (R§ +A§) .

m ]0 ]m 20
To derive (GR2b), we recall that

0

o P]k = %Rﬁ — kag + WRJ-,C

and calculate
Ry = 0074 — (9,76 — DTG, + T, T8 )
0 _
= 05+ (7% + 4f)
= V'Rjp — ViR + VAL
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Finally, to derive (GR3), we use (GC3) and (GC4) to compute

Rijo = 00Tl — (860 + T4t ) + TEG,,
9 (m L e (lees ¢
_—3—{(Rj+Aj) +Y; <§v R+B

334 0 4
~ (u+C) (R + o + A%)

+ (R + o+ AT (R + oy + AL

0 B
= —8—t_R§ +(p—C)R: + §vjva +RI'R,

o _ _
—8—£A§+A}”Afn+(u—C)A§+R§-”Afn+A;”an

C £
+V;B" — uCds.
q.e.d.

Corollary 29 Ifi,j > 1, then Rc satisfies:

Rij = Ry;
~ 1 _ _
Rop = §V,CR — (64),
~ 1 _ _
Ry = —2R+ C (R+nu) +|A|, + 0B,
20t
where B B
(04), = —VPAp, = V, A
and

5B = —V’B, = —V,B".

Proof. The first two equations are easy. For the third, we substitute
the formula

10- 1-- - _ _
~Yp_ - pq
5 BER > AR+ Ry RP" 4+ uR
into the calculation
ROO = _joo
0 - A : —
= B_ER +(C—-pu)R— §AR — R'Ry; — AT A}, — V;B? + nuC

and cancel terms. q.e.d.
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3.2 Solutions of the Ricci flow for degenerate
metrics

The goal of this section is to determine necessary and sufficient condi-

tions on A, B, and C for (g, V) to satisfy the rescaled Ricci flow for

degenerate metrics. (Recall Definition 15.) Our results here are most
easily stated if we introduce the 1-form

E = B+ 20A.

We shall see that a particularly nice set of equations is obtained when A
and F are closed initially. In this case, there is always a solution (g, @)

satisfying Definition 15 for as long as g (f) exists.

Proposition 30 Suppose C = u. Then (gﬁ) satisfy the Ricci flow
with cosmological term p, namely

9 ~ L. L. -
ol = ~Vilt) = ViRY + VERyj, (33)

if and only if the 2-form A = A de' ® dx? satisfies

9 - _ _
A= —diA—2uA (3.4)

and the 1-form E = E;dx* satisfies

%E: —daE—zuE—d|A\;. (3.5)
If dA = 0 initially, then dA = 0 for as long as a solution exists; and if
dE = 0 initially, then dE = 0 for as long as a solution exists. So if A
and E are closed initially, (3.3) is valid if and only if A and E evolve
by
9 A= AjA—2uA (3.6)

ar T Tt T ‘
and

O f = BB — 2B — d) A 3.7

Bt_E = Ay Iz | ‘g (3.7)

respectively, where —Ag = dé + 0d is the Hodge-de Rham Laplacian.
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Remark 31 When A and E are closed initially, (3.6) and (3.7) are
both parabolic equations whose solutions exist as long as the solution of
the Ricci flow with cosmological constant u exists.

Remark 32 The choice C = yu is useful to obtain good evolution equa-
tion if either A or B 1is nonzero. But if A and B are both identically
zero, taking C = 0 as in §2 generally yields better results.

Remark 33 If (A, E’) is a pair of initially-closed forms satisfying equa-
tions (3.6) and (3.7), then the pair (AA,\*E) is also, for any X\ € R.

Proof of Proposition 30. Let Ffj denote the RHS of (3.3). If
i,7,k > 1, then formula (3.3) reduces to the standard evolution equation
for f’fj It is easily checked that both sides of (3.3) vanish if &k = 0,
provided that pu and C are constant. If j =0 but ¢,k > 1, then

Ih = —VRE — SoRE + VE Ry
v, Bw _ (M)k] (R4 ud? + A7) R
~ SRS~ (Y4 ud? 4 A7) B+ (BE 4 i+ A) R
+VE B%R - (M)Z} +g" (BY + pé] + A7) Rip
0

—8—{1‘%;“ — 2APRE — V;VP AL — VAV, AL

Since Tk, = — (RE + pok + AF), it follows that (3.3) holds for j = 0 and
i,k > 1 if and only if

o _ _ _
8—{A§ = V;VPAL + VFV,A? + 24P RE,

hence if and only if

9 ¢ 0

afAl’j =5 (Afgkj> = - (dgA)ij - 2udy;.

If i =35 =0 but k > 1, we recall that

ok (%3) = O (VR) — 2 (R{S'R + uV*R)
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and compute

Fky = —VoRE — VoRE + VF Ry
O (laps =mk\  mp 5k =% &
= [8_f <§ka — (34) ) — B RE + r’ngg]

— 1 8 — — —12 - — ~ ~
k —kt
+V (5 o7+ CR+ Al + 6B> — 2g"Th Rpo

_ 10 (s Sk Sk
—557 (V*R) = V*9,B” —2B7R}
0 / 1ye o _ o
+ 20 (39,48 + VEA]S +2(u — ) (VA% ) — 4R¥79, AL

Since T, = — VKR — BF, it follows that (3.3) holds for i = j = 0 and
k > 1 if and only if
9 (B +2v,48) = 9 (93¢ (B + 25"V, 47 ) |
a7\ ) T 5% 9jk g Vpiy
= ?j?po — QMB]' — ﬁj |A|§ +2 (,u + C) ?pzipj.

When C' = p, this equation is the same as

& (B+254) = ~d5B — 20 (B + 204) — d| A]

= —d6 (B +204) — 21 (B +284) — d|A],

because 62 = 0.
To complete the proof, it suffices to note that

% (dA) =d (%A) = —2u (dA)

and 3 5

—=(dE)=d| =E ) = —2u (dE

31 (0E) = (E) = 2 aB).
because the exterior derivative is independent of the metric and satisfies
d>=0. q.e.d.

In analogy with Remark 14, we make the following observation:

Remark 34 If A evolves according to equation (3.4), one has the sym-
metry

ViRjo — ¥k = Yoy
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Proof. Because

Y. (1. Y
ViR vz(ivJR VA> I R,

we observe that when (3.4) holds, we have

. o . .
Vodij = 5zAij — Lo Ap; — o4y
= vzv 14_1 - V VpApZ —|— A Rp] A]sz
= ViRjo — @R,O

q.e.d.

3.3 New Li—Yau—Hamilton quadratics

We now wish to regard Rm as the bilinear form defined on A2TM by
(2.17) and (2.18). To be useful as a LYH quadratic, it is desirable that
a bilinear form be symmetric and positive. Fortunately, symmetry of
Rm is compatible with the other properties we wish V to possess. In
particular, we have the following;:

Lemma 35 The bilinear form Rm has the symmetry
RijOZ = ROZij

for all i,j,0 > 1 if and only if A is a closed 2-form. Moreover, Rm has
the symmetry

Royjor = Rowoj
for all 5,0 > 1 if A evolves by (3.4), C = u, and E is a closed 1-form.

Proof. By (GR2a) and (GR2b), we have
Rijoe — Roeij = GepRYjo — Gjn Ry = ViAie = Vidje + Vedij = (dA) 4,
Next we observe that

0 0
9ir 57 ot R( gfp a_R =0
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and

9, 9 9 1 L on . 1
Tivgp Al — Jv g A7 = 257 A0 + 2Ryp Ay — 2Ry A + 4 Ay (3.8)

Hence by (GR3),

Rojoc — Row;j = gﬁpRlo)jo — Gip Ry
(o, 0 fo., B
i <8tRZ o f) Itp (atRJ a0 J)
+2(p—0C) Aj[ + 2A§RM - 2A§Rk]' + (vag — WB]-)

5 i _
= 25740+ 2 (u+C) Ag; — (dB) ;-

If aﬁfl = —d0A — 2uA, this becomes

|

Ro;’oe - Roeoj' =2(C—p) Aéj —d (B + 25‘4)@' :

q.e.d.

It is also fortunate that the maximum principle applies to the curva-
ture Rm of a generalized connection. To see this, it will be convenient
to introduce a (1, 1)-tensor A defined for 7,5 > 1 by

Al = Al
K3 K3
A) = (B+4d4)
A=0
A = p.

Proposition 36 Let A and E be closed initially and evolve by (3.6) and

(8.7), respectively. Let C = p be constant. Then Rm is a symmetric
bilinear form which evolves by

o~ e — D~ — .
VoRm = ARm+ Rm + Rm +2pRm + AV Rm. (3.9)
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Proof. Because V is symmetric, one computes directly from the
definition that
8 8 0 ~y
0 0 0 ~ 0
9 I I ) — I‘2 - Tt
+ (815 ) + (at "") (at Z’“) (at gm
0 ~ 0 0 ~p ~0 (0=
-0 (5t -5 (5% ) - (atfm) 7o (3i15)

0 = ~m 0 = m 8 T 9 [m

Hence by Proposition 30 and the Ricci identities,

9 -~ _ P Y e my mga

SRl =V, (v,ch - vaz-k) v (kaﬁ - vajk)
D > 534

+ Rjim By — R Ry,

On the other hand, the second Bianchi identity implies that

ARGy = §1V,V Rl =~ (ViR + VRl
= ViViRj), — ViV RS — V,;V Ry,
+ V; ViR — R"RS, . — RT'R;1

m DL m Dl 534 m
R z]quk+ pszqu szmR]qlc

+Rm2quk + R quzm RZ]ng;Lk

while straightforward calculations reveal that
R = 375" Rijpr Rsgre = (Rmequ + Rpngqmu)

and

Ry = Rasealtygrs (609957 — 870150 (85635 — 7045° )

= _gpq (qumfR 7k + R sz]qu + R]meRqZk + R]quzprrM)
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Because equation (3.9) is readily verified for £k = ¢ = 0, we may assume
without loss of generality that £ > 1. Then we can combine the identities
above to obtain
0 = = 9 M D RPM >,
8_£Rijkk = gﬂma__ERijk — 2Rim Rij, — 2uR;jke
= ARjjre + Rjpe + RYpy — 2uRijne — REVE Ry,

because glmARggk = ARijkz and R;”Rijkm = Rgmﬁfg?k. Now if we regard

. ~ \q .
[y as a (globally-defined) space-time (1, 1)-tensor (1"0> = ng, we may
P
write 9
VoRijke = o Rijee — (FoVRm)
04Y5ke ot ijk{ 0 m ke
yielding

$oRm = ARm + Rm_ + R — 2uRm — (fo + PTc) VRm, (3.10)

where Rc here denotes the (1,1)-tensor R} = Rym@™. We claim equa-
tion (3.10) is equivalent to equation (3.9). Indeed, it follows from
(GC2)—(GC4) and Corollary 29 that for p,q > 1 one has

(Fo+Re)’ = —uog — 43
P
(Fo+Re), = —B7 - (54)"
. —~\0
(To+Re) =0
P
. —~\0
(F() + RC)O = _ZN-
So one need only check that if N denotes the number of space-like
components of R;jx¢, the RHS of (3.10) contains —2+ N +2(4 — N) =
6 — N terms of the form pR;ji, while the RHS of (3.9) contains 2 +
(4 —N) =6 — N such terms. q.e.d.

Armed with the tools to show that Rm remains non-negative, we
are now ready to construct Li-Yau-Hamilton quadratics.

Condition 37 Assume in the remainder of this paper that g (t) is a so-
lution of the Ricci flow on M for t € [0,Q), and that § (1) = e~'g (et_>
is the associated solution of (2.8), the Ricci flow with cosmological con-
stant p =1/2, f/o]: t € (—00,InQ). Assume further that the generalized
connection on (M, g) defined by (GC1)-(GC5) has C = p=1/2.
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Given any 2-form U and 1-form W on M, we define X=U® %W,
so that for ¢,7,> 1,

X — i
X0 — _xi0 = Lypi,
2
If there exist A and B such that Rm is symmetric, we define the forms
Ai, = Algjy, = tAy,
By = Blgj, = tBy
By = (B7 +2(64)7) g1 = B + 2t (64),,

and make the following observations:

Remark 38 Let A4 and Ag denote the Hodge—de Rham Laplacians of
(g,V) and (g, V), respectively. Then A is closed and evolves by

9 - - _ _
—A =A4A —2uA
o1 d 12

if and only if A is closed and evolves by

LN .

A.
ot

Moreover, E = B + 20 A is closed and evolves by
O i
—F =AyF —2uFE — d|A|
at d H | ‘g

if and only if E = B+ 2t0A is closed and evolves by

(9 1—2/1/ 2
—F =A4F E—d|Al7.

If w = 1/2 and A is closed (exact) initially, then A remains closed
(exact). Likewise, if p = 1/2 and E is closed (exact) initially, then E
remains closed (exact).

Proof. The evolution equations are straightforward calculations.
Together with Proposition 30, they imply that A and E remain closed
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if they are initially. To prove the assertions about exactness, suppose
that A (0) = dag and E (0) = deg. Let «(t) and € (¢) be solutions of

0
priche Aya, a(0) =ap
and
0~ Age— AP =
EE_ d€ — | |g7 e(0) =eo

respectively. Then

% (da) =d (%a) =—d(dé + déd) a = — (dd + 6d) (da) = Ay (da)

and similarly

2 (de) =d (%s) =d (Ads - |A|§) = Ag(de) —d|A[.

By uniqueness of solutions to parabolic equations, we have A (t) = da (t)
and E (t) = de (t) for as long as g (t) exists. q.e.d.

Theorem 39 Let (M", g (t)) be a solution of the Ricci flow on a closed
manifold and a time interval [0,K2). Let Ay be a 2-form which is closed
at t = 0 and let Ey be a 1-form which is closed at t = 0. Then there is
a solution A (t) of

9
4= Add, A(0) = Ay

and a solution E (t) of

0 2
5 = BaE —d| A7, E (0) = E,

which ezist for all t € [0,Q). Suppose that

1
0 <Rm (U,U) + 5 WP+ AW —2(VwA,U) — (VwE, W)

at t = 0 for any 2-form U and 1-form W on M, and let Rm be the
curvature of the generalized connection on (M, g) with B = E — 2t6A
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and C =1/2. Then for all t € [0,L2), one has the estimate
0 < ¢Rm (X, X)
= RijpeUU* +2[t (VeRjr — ViRjo) + VjApg) WIU*
2 (ARje — 4V, ViR + 2R;pq P — R Ry )

RV VA
Tt (2R + AVRy + APRy; — 2V, VR Ay ) | WOWE
1P gje — AS Ay — VB,
Proof. By Remark 38, there are closed solutions A and E of (3.6)
and (3.7), respectively, existing for —oco < < log€. Set Q = e’Rm.
Then by Proposition 36,

72 = o ()

= R+ R
o~~~ —~ . ~ —
— ARm+Rm’ +Rm" +2Rm+ (Fo+ 4) VR (3.11)
Since @ > 0 at t = 0, it will suffice to apply the space-time maximum
principle (Proposition 26) to @ for 0 < t < €. Notice that for j,k > 1,
. Nk 1
— —tRk — Zgk
(Fo+ A)j = —tR} — =0}

and define a generalized symmetric connection V on M x [0,9) for
i,j,k > 1 by

k - 1k
Ui = T4
It = R}
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where the Pk are determined by the Levi-Civita connection of g, and

FF = % (t—1)VFR — (5A4)F.

Let g be the space-time metric on M X [0,9) induced by g: namely,
§9 = g¥ and §°° = §°° = 0 for i,j > 1. By Lemma 27, § is parallel with
respect to V. One verifies by straightforward calculation that

ARm = §*V,V,Rm = §1V,V,Q = AQ

and
RY e = 33" Rijap Reare = 979" QijanQeane = Qe

and
> ab,pq ~cd,rs ab,pq cd,rs
R,’jkg RabcdR qrsc C = QabchpqrsCU Cy. = szk[’

bed . _f ~ab,cd .
where ca] = 5a5d be (5;9(53gad =e tC’fj “®. Thus equation (3.11) can

be written in the form
VoQ = AQ + Q% + Q7,

whence the theorem follows by applying Proposition 26 to @ for 0 <
t <. q.e.d.

If Rm is symmetric, we define another symmetric bilinear form H
on A2TM by stipulating that H obey the symmetries

ﬁabcd = _ﬁbacd = _Ianbdc = Hcdab
for all a,b,c,d > 0 and satisfy
f{ijké = Rij/ce
Hojre = VjAge
H0j0£ = AjApe + %EZ

for all 4,7,k,¢ > 1. Then we define and expand
U (A, B,UW) =l (XX)
= RijreU U 4 2WIV; AU
— (Ag?Apf n vng) wiwt.
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Theorem 40 Let (M™, g (t)) be a solution of the Ricci flow on a closed
manifold and a time interval [0,9). Let Ay be a 2-form which is closed
att =0, and let Fy be a 1-form which is closed at t = 0. Then there is
a solution A (t) of

0
—A=A4A A0)=A
ot d‘ty () 0
and a solution E (t) of
9 2
—FE=A4F—d|A E(0) =F,
5 d Al (0) = Ep

which ezist for all t € [0,92). Suppose that
0< V(A EUW)|,_
=Rm (U,U) —2(VwA,U) + |[A(W)|> = (VwE, W)

for any 2-form U and 1-form W on M. Then ¥ (A, E,U,W) remains
non-negative for all t € [0,€).

Proof. Suppose (M, g (t)) exists for ¢ € [0,92), and define
& (A, B, U,W) = ¢/Rm (X X) ,
where Rm is the curvature of the generalized connection on (./T/T ,§) with
B =FE —2t§A and C = 1/2. By hypothesis,
0<VT(A,E,UW)<®AEUW)

att =0forall U and W. So ® (A,E,U,W) >0 for all t € [0,2) and all
U, W by Theorem 39. Now since ¥ (/\A, \NE, U, W) =V (A, E, U W),
it follows from Remark 33 that ® ()\A, NE,U, W) >0 for all t € [0,Q),
all U, W, and all A > 0. In particular, at each fixed ¢ € [0,£2), we have
0<o (/\A7 NE, U,)\*lW) for all U,W and A > 0, and hence

0 < lim ® (A\A,NE,UX'W) =T (4, B,U,W).
A—00
q.e.d.

Corollary 41 Let the hypotheses of Theorem 40 hold. Then for any
1-form V, we have

0< 9 (A B, V)=Re(V,V)—2(04) (V) +]|A]” + 0E
=Re(V,V) —2(5A) (V) + |A]” + 6B
for as long as the solution (M, g (t)) exists.
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Proof. For an orthonormal frame {e;}, take U;;
and trace over W € {e1,...,en}. q.e.d.

1
2

47

(ViW; = V;W3)
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Chapter 4

Examples

We shall now develop some examples, which may be regarded as further
corollaries of Theorem 40. Our intent is to explore the utility of the new
LYH quadratics by comparing their implications with known results in
a few special cases. Although our principle examples come from Kéhler
geometry, we emphasize that the main results of this paper are more
general, and in no way require a Kahler structure.

4.1 Kahler examples

By definition, a Riemannian manifold (M",g) is Kéahler if there is
an almost-complex structure J : TM — TM such that g is Hermi-
tian g (JX,JX) = ¢g(X,X) and J is parallel Vx (JY) = J(VxY).
The latter condition immediately implies the symmetry R (X,Y) JZ =
J(R(X,Y) Z) of the Riemannian curvature.

There is a one-to-one correspondence between J-invariant symmetric
2-tensors and J-invariant 2-forms on a Kahler manifold. Indeed, given
a J-invariant symmetric 2-tensor ¢ (JX,JY) = ¢ (X,Y) = ¢ (Y, X),
let F(X,Y) = ¢(JX,Y). Then F is a 2-form F (Y, X) = —F (X,Y)
which is J-invariant F (JX,JY) = F (X,Y). Conversely, given a J-
invariant 2-form H (JX,JY) = H(X,Y) = —H (Y, X), let n(X,Y) =
—H (JX,Y). Then 7 is symmetric n (Y, X) = n (X,Y) and J-invariant
n(JX,JY)=n(X,Y). The Kdhler form w is defined to be the 2-form
induced by a Hermitian metric g, and the Ricci form p is defined to be
the 2-form induced by the Ricci tensor Rc of g. These definitions are
justified by the following standard facts:

Lemma 42 Let J be an almost-complez structure on (M™, g).

49
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1. If (M, g) is Kdhler, then Rc is J-invariant.
2. If (M, g) is Kdhler, then p is closed.

3. If g is Hermitian, then J is parallel if and only if w is closed.

It follows easily that the Ricci flow preserves a Kéahler structure.
Indeed, (1) implies that g remains Hermitian, whence (2) and (3) imply
that J remains parallel, because

% (dw) = d (%w) =d(-2p) =0.

A key observation for the constructions in this section is the following:

Lemma 43 Let ¢ be a J-invariant symmetric 2-tensor and let F' be the
corresponding J-invariant 2-form. Then ¢ satisfies the Lichnerowicz-
Laplacian heat equation

Zh=A
ot L¢7
if and only if F satisfies the Hodge-Laplacian heat equation
0
—F = A4F.
ot ¢

Proof. If %(ﬁ = A ¢, then direct computation gives

0 0

50 = 5 (Jik¢kj) = Jf (A¢kj + 2Rppg; "7 — Ridpe — Rﬁ%’z)

= AFj + 2J Rypg; 9" — R5Fy — Jf Ridjo-
The Hodge—de Rham Laplacian of F' is
AgFyj = — (déF)ij - (5dF)z‘j
= (ViV*Fiy = V;V i) + V* (ViFy = ViFi + V;Fi)
= AF; — (VAVi = ViV¥) By + (V49 = V;9%) B
= AFj; + 29" R} Fymy — R} Fyj — REFy.
The identity

(R(Z,W)X,Y) = (R(X,Y)ZW)
= (R(X,Y)JZ,JW) = (R(JZ,JW)X,Y)
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implies in particular that R(JZ, W)X = —R(Z, JW) X, and hence
JF Ripgjd?" = —RigjJy " = 9" Ryijo I} 0% = 9" R} Fuq.

Thus

d
5 Fii = DaFyy = JFRL 0 + RV Fy;.

But since the Ricci tensor is J-invariant, we have
L pk k pt
SR = Ji Ry,

so that
—Jf Ribjo = —JiRidjo = —RY Fy;.

Hence %F = Ay4F. The converse is proved similarly. q.e.d.

Proposition 44 If (M",g(t)) is a Kdhler solution of the Ricci flow
with non-negative curvature operator on a closed manifold, the choices

1
A:tp—l— 5(4)
and
2 dR
EF=——
2

yield the estimate
0<Rm(U,U) —2(Vwp,U) + 4%2 W+ %Rc (W, W)
+Re2 (W, W) + % (VVR) (W, W)
for all t > 0 such that the solution exists.

Proof. The choice A =tp+ %w satisfies

0 0 1
— A= o+ =(=2p) =tAp = A A
5 p+tatp+2( p) ap d

by the preceding lemma, and
|A]> = 2 |Re|> + tR + %.

If £ = df for some smooth function f, then F will satisfy

0 2
—FE =A,F —d|A
pr d d|A
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if and only if
0 0 2 2 n
d<§f>_aE_d(Af #2|Re|? — R 4).

The choice f = —t2R/2 satisfies
LN —t*|Re|* — tR
ot '

So to apply Theorem 40, we need only check that U (A, E,U, W) > 0 at
t = 0 for any 2-form U and 1-form W. Noting that Rc? (JW, JW) =
Rc? (W, W), we compute

1
(4, B,U,W) =Rm (U,U) = 2t (Vwp,U) + |W %+t Rc (W, W)

2
+ t2Re2 (W, W) + % (VVR) (W,W).

This is clearly non-negative at ¢ = 0 whenever the curvature operator
is. Hence Theorem 40 implies in particular that 0 < ¥ (A,E, U, %W)
for all U and W at any t > 0 such that the solution exists. q.e.d.

To apply Corollary 41, we note that 0F = ddf = %AR. Because

1 ; ; t
(64); =t (dp); + ) (0w); =tV pyj = th'kV]Rkj = §Jz'kkaa
we have
t .t
(6A) (V) = §JkaRVZ =5 (VR,JV).
Then setting V = tJ X, we compute
Y (A, E,V)=Rc(V,V)—-t(VR,JV)

2 2 n ﬁ
+ (2 [Ref* + tR + 4) + AR
_tQ[ AR+2[Ref* + & }

2 | 42(VR,X) +2Rc(JX,JX)
1 n
+3 (tR + 5) ,

obtaining:
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Example 45 If (M, g (t)) is a Kahler solution of the Ricci flow with
non-negative curvature operator on a closed manifold, then for any vec-
tor field X and allt > 0 such that a solution ezists, we have the estimate

0 R R n

0<|=R+—+4+2(VR,X)+2Rc(X, X —4+—. 4.1
_at+t+< )+ 2Rc( )]+(t+2t2> (4.1)
The terms in square brackets compose Hamilton’s trace quadratic.
So this special case of our general inequality is weaker than that esti-
mate. To gauge the potential usefulness of our inequality, however, we

can make qualitative comparisons. Taking X = 0, we obtain

OR n 0 n
0< 22" 4 2R —:—[t(tR —)]
A T R T3

Hence at any © € M and times to > ¢ with ¢t3 # 0, we have

R(z,t5) > (%>2R(x,t1)+i (t—1—1>.

2 2ty \ o

If we have an ancient solution, so that the interval of existence is ¢ €
(—00,€2), we can translate in time ¢ — ¢t—7 and take the limit as 7 — oo
to conclude that R is a pointwise nondecreasing function of ¢t. Thus this
particular example (4.1) of our general result is strong enough to recover
that important fact. (Compare [12] and [13].)

On the other hand, suppose t; > 0 and there is some constant C' > 0
such that R (x,t1) > nC/t;. Then for all t5 € [t;,Ct;] we have

R (z,t) t\*nC n (1 R (z,t)
to) > ) (R e B2 g s B
Rlat2) 2 =5+ (m) 2, 2, \C = Tac?

In all known applications of a trace LYH inequality, one has t; > ¢ >
0. Thus in this sense also, the special case (4.1) of Corollary 41 is
qualitatively equivalent to Hamilton’s estimate.

Remark 46 If (M",g(t)) is a Kdhler solution of the Ricci flow on
a closed manifold, we can choose A = p and E = —dR/2 (thereby
dropping the explicit time dependency from Ezample 45) and thus obtain
the quadratic

1
o (p, —5dRU, W) =Rm (U,U) — 2(Vwp,U)

+Re2 (W, W) + % (VVR) (W,W).

One would not, however, expect this to be positive for general initial
data.
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4.2 Other examples

Proposition 47 Let (M?,g(t)) be a solution of the Ricci flow on a
closed surface, and let dS denote the area element of g. Then for any
pair (¢, f) solving the system

0
aqﬁ =A¢p+ Ro (4.2a)
0
—f=A 2 4.2b
the choices A = ¢dS and E = —2df yield the trace quadratic
0
V(4B X) = RIX]" +2(Ve, X) + o f
and the matriz quadratic
U (A, E,UW)
= R|UI* = 2(Vo,W) (w,U) + ¢ |W[* + 2(VV ) (W, W).

Ifv >0 (¥ >0) att =0, theny >0 (¥ > 0) for as long as the solution
exists.

Example 48 On any closed surface (MZ,g) of non-negative curvature
evolving by the Ricci flow, the pair (¢, f) given by

¢=tR+1

f=to=t’R+t
yield the estimate

2tR+1
2
for any vector field X and all t > 0 such that a solution ezists.

0< %R+2(VR,X)+R|X|2+

It is remarkable that this special case of Proposition 47 recovers the
result in Example 45. Even though Proposition 47 is a priori more
general than Proposition 44 in the sense that it depends only on the
dimension, the construction in Proposition 47 is specific to surfaces,
and does not generalize readily to higher-dimension manifolds (whether
Kéhler or not).

In analogy with Remark 46, one can drop the explicit time depen-
dency in Example 48 and notice that the choices ¢ = f = R solve
system (4.2a)—(4.2b), obtaining;:
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Remark 49 On any closed surface (MQ,g(t)) evolving by the Ricci

flow, one has the trace LYH quadratic
0
v(4,F,X) = 2 R+2(VR, X) + R|X|?.

Proof of Proposition 47. Write the area element of g as (d5),; =
Jikgkj, and suppose that A = ¢ dS for some smooth function ¢. Then
using the standard fact that %ds = —RdS, we get

0 0

—A=|=9¢—- ds.

i = (70~ o) as
Because AjA = (A¢) dS, it follows that A satisfies the Hodge heat
equation %A = AyA if and only if ¢ evolve by equation (4.2a). Now
suppose F = —2df for some smooth function f. Then since

A* = 6> 4 T gy T gqe = 247,
it follows that E satisfies %E — A4E — d|AJ? if and only if
0

—2d (af> = 2(dd + 6d) (df) — 4pdp = —2d (Af + ¢?).

Hence we can apply Theorem 40 with any solution f of (4.2b).
To apply Corollary 41, we first calculate
(5A)i =(0(¢ dS)i) = (Vj¢) (dS)ij = Vj¢Jz'kgkj = Jikvk¢ =(J d¢)i-

Then we need only note that JE = 2Af and set V = 2JX in the
resulting expression:
1
v(4,B,V) =R V2 =2(Ve,JV) +2¢° + 2AF.
q.e.d.
Proof of Example 48. The choice ¢ = tR + 1 satisfies
0
5 =t(AR+ R?) + R= A¢ + Ro.
Then if f =t = t>R + t, we get
0

5 =t(A¢+Rp)+¢=Af+ (tR+1)p=Af + ¢

Hence the trace LYH quadratic takes the form
¥ (A, B, tX) =t (R|X|2 +2(VR, X) + AR+R2) +2tR 41,

which is certainly positive at t = 0. q.e.d.
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Remark 50 On any surface (MQ,g(t)) of strictly positive curvature
evolving by the Ricci flow, the trace inequality

0
0< RIX["+2(V,X) + o f

in Proposition 47 can be deduced from the following calculations. Let
F=Af+¢*—R 1 |Vg|* and observe that

Ip_ A (Af + ¢%) + RF + RY* + 20A¢ — |V

ot
— 2R ((V¢, VAP + ¢ (Vp, VR)) + R™2|V¢|* AR.
Since by Bochner,

AF =A(Af+¢%) —2R™! ((VA¢, Vo) + |[VV¢|* + g |v¢|2)

+ R (|v¢|2 AR+ 2 <VR, v |V¢|2>) 2R3 |VR] Vo]

we have
0

5 F = AF + RF + R¢* + 2¢A¢
+ 2R} (\vw ~R VR V|’ — ¢ (Ve VR))
> AF +RF + R (A¢— (Vé,VInR) + ¢R)*.
The inequality on the last line is equivalent to the estimate
N = R(R¢* + 20A¢) +2 (\vw ~R'VRe V|’ - ¢ (V, VR))
— (A¢ — (Vé,VIn R) + ¢R)?
—2 (|vws|2 . <v V|2, VlnR> ok |VlnR|2)
_ ((A¢)2 —2A¢(Vé, VInR) + (Vé, Vin R)2)
—2|VV$—Vé® VInR|:— (Ad— (Vé,VInR))? > 0.

Our final example makes no use of a Kahler structure:

Example 51 If (M™, g (t)) is any solution of the Ricci flow on a closed
manifold, the choice A = 0 lets us take E = —df for any solution f of
the ordinary heat equation %f = Af, and leads to the LYH quadratic

U (0,—df, U, W)=Rm(U,U)+ (VVf)(W,W).
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In case the curvature operator of (M, g) is non-negative initially (hence
for all time), Theorem 40 applies whenever VV f > 0 initially and is
equivalent to the statement that the weak convezity of f is preserved.
(Compare Remark 2 in §6 of [6].)
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