An introduction to the Ricci flow neckpinch

Dan Knopf

Singularity formation has long been one of the most intensively studied aspects
of nonlinear PDE and in particular of geometric evolution equations. This article
surveys some recent progress made in understanding singularity formation for the
Ricci flow.

1. The neckpinch singularity

In the Ricci flow, one begins with a smooth Riemannian manifold (M™, go) and
evolves its metric by the equation
(1.1) %g = —2Rc(g).
Standard long-time existence theorems for the flow imply that a singularity will
occur at some finite time 7T if and only if there exists a sequence of points z; € M
and times t; /T such that

lim |Rm (z;,t;)| = oc.
11— 00
Singularity formation is quite common. For example, whenever Ry, (0) > 0,

the parabolic maximum principle allows one to compare solutions of the reaction-
diffusion PDE

2
Op= AR +2|Re|> > AR + ERZ

ot
satisfied by the scalar curvature with solutions of the ODE
ar 2,
dt n
. . 1
and thus conclude that a singularity must occur before ZR,_; (0).

From one perspective, finite-time singularities of the Ricci flow have been in-
tensively studied, especially in dimensions three and four. This study has been
motivated by the fact that the flow can reveal geometric and topological informa-
tion about the underlying manifold M™ in those dimensions. As is well known,
Richard Hamilton is the architect of a well-developed program [9] to resolve the
Geometrization Conjecture for closed 3-manifolds [14] by using the Ricci flow. At
the time of this writing (July 2003) there has been recent remarkable progress
[11, 12] made in this program by Grisha Perelman.

From the perspective of asymptotic analysis, however, remarkably little is
known about singularity formation in the Ricci flow. For example, one cannot
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find in the literature examples of either formal or rigorous singularity analysis for
the Ricci flow comparable to what has been done for the mean curvature flow [3]
or for other reaction-diffusion equations like u; = Au + uP. (See [6, 7, 8] and [5]
for example.) In fact, there were until recently no rigorous constructions of finite-
time singularities — except for trivial examples where the manifold is a product of
constant-curvature factors, one of which vanishes all at once.

One says a solution (M™, g (t)) of the Ricci flow encounters a local singularity
at T < oo if there exists a proper compact subset K C M™ such that

sup |Rm|= o0

K x[0,T)

but

sup |[Rm| < co.

(M™\K)x[0,T)

The first examples of local singularity formation for the Ricci flow were constructed
by Miles Simon [13] on noncompact warped products Rx ; S™. In these examples, a
supersolution of the PDE is used as an upper barrier to force a singularity to occur on
a compact subset in finite time. The only other known examples were constructed
in [4]. Here, the metric is a complete U (n)-invariant shrinking gradient K&hler—
Ricci soliton on the holomorphic line bundle L=* over CP"~! with twisting number
ke{l,...,n—1}. Ast /T, the CP™ ' which constitutes the zero-section of the
bundle pinches off, while the metric remains nonsingular and indeed converges to
a Kahler cone on the set (C*\ {0})/Z} which constitutes the rest of the bundle.
Both of these families of examples live on noncompact manifolds.

A neckpinch is a special type of local singularity. There are quantitative mea-
sures of neck-like behavior for a solution of the Ricci flow [10], but the following
qualitative characterization will suffice for our present purposes. One says a solu-
tion (M™*1,g(t)) of the Ricci flow undergoes a neckpinch at time T' < oo if there
exists a time-dependent open subset N; C M™+! such that N; is diffeomorphic to
a quotient of R x S™ by a finite group acting freely, and such that the pullback of
the metric g () | V¢ to R x S™ approaches the ‘shrinking cylinder’ soliton

(1.2) ds? +2(n —1) (T — 1) gean

in a suitable sense as t , T. (Here gean denotes the round metric of radius 1 on
S™.) Except for a sphere shrinking to a round point, the neckpinch is perhaps
the simplest singularity which the Ricci flow can encounter. It is also one of the
most important with regard to the goal of obtaining topological information from
the Ricci flow: it is expected that one can perform a geometric-topological surgery
on the underlying manifold M™ just prior to a neckpinch in such a way that the
maximum curvature of the solution is reduced by an amount large enough to permit
the flow to be continued on the piece or pieces that remain after the surgery.

The first rigorous examples of neckpinches for the Ricci flow are constructed by
Sigurd Angenent and the author in [2]. In fact, these are the first examples of any
sort of nontrivial pinching of the Ricci flow on compact manifolds. The remainder
of this short note will discuss some of the results obtained there and outline key
aspects of their proof. The main results of that paper are as follows.

THEOREM 1. Ifn > 2, there exists an open subset of the family of SO(n + 1)-
invariant metrics on S™t! such that any solution of the Ricci flow starting at a
metric in this set will develop a neckpinch at some time T < oo. The singularity is
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Type-1 (rapidly-forming). Any sequence of parabolic dilations formed at the devel-
oping singularity converges to a shrinking cylinder soliton (1.2) uniformly in any

ball of radius o (\/—(T —t)log(T — t)) centered at the neck.

Any SO(n + 1)-invariant metric on S™*! can be written in the form

(1-3) g= 902 dz® + ¢2 Jcan

on the set (—1,1) x S™, which may be identified in the natural way with the sphere
S+l with its north and south poles removed. The quantity «(z,t) > 0 may thus
be regarded as the ‘radius’ of the totally geodesic hypersurface {z} x S™ at time ¢.
It is natural to write geometric quantities related to g in terms of the distance

from the equator. Then writing % = % and ds = ¢ dz, one puts equation (1.3)

into the nicer form

1
)

g= ds®> + ¢2 Gcan-

Armed with this notation, one can make a precise statement about the asymptotics
of the developing singularity.

THEOREM 2. Let 5(t) denote the location of the smallest neck. Then there are
constants 6 > 0 and C < oo such that for t sufficiently close to T one has the
estimate

¢($at) <1 c ( _ §)2

(14) 14o(l) < 2 —1)(T —t) ~ M) llog(T — )]

in the inner layer |s — 3| < 24/(T — t) [log(T — t)|, and the estimate

U(z, t) s—3 log §—3§
vT V(T —t)[log(T —t)| 7 /(T —1) [log(T — )|

in the intermediate layer 2\/(T —t) [log(T —t)] < s —5 < (T —t)=~°.

(1.5)

The estimates in the theorem are exactly those one gets when one writes the
evolution equation (2.2) satisfied by ¢ with respect to the self-similar space coor-
dinate ¢ = (s — 3) /v/T —t and time coordinate 7 = log (1/ (T —t)) and derives
formal matched asymptotics. We expect therefore to show in a forthcoming paper
that these bounds are sharp.
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2. How the solution evolves

The first task in studying neckpinches is to compute basic geometric quantities
related to the metric (1.3). One begins by observing that g will solve the Ricci flow
(1.1) if and only if ¢ and v evolve by

(2.1) v = n‘ﬁ;w
and

a2
(2.2) Wi = ey — (0 — 1) w‘/’s

respectively. In order that g () extend to a smooth solution of the Ricci flow on
S™+1, one imposes the boundary conditions

(2.3) Jim 4 = F1.

REMARK 1. The partial derivatives Os and Oy do not commute, but instead
satisfy
Vss

(4

REMARK 2. Equation (2.1) will disappear in what follows, because the evolution
of o is controlled by the quantity Vs /1.

[6,5, 63] =N

0s.

The Riemann curvature tensor of (1.3) is determined by the sectional curvatures

Vss
2.4 Ko =—
(2.4) m
of the n 2-planes perpendicular to the spheres {z} x S™, and the sectional curvatures
1—q2
(2.5) K, = e g

of the (3) =n(n — 1)/2 2-planes tangential to these spheres. The Ricci tensor of g

is thus
(2.6) Re = (nKy) ds® + (Ko + (n — 1) K1) gean,
and its scalar curvature is

(2.7 R=2nKy+n(n-1)K;.

3. Bounds on the curvature and other derivatives

To begin the proof, we use the maximum principle obtain control of the first and
second derivatives of ). We begin by studying the first spatial derivative v = ;.
The calculation

n—2 n—1
Vg = Vs + " vvs + e (1-v*)w
implies that [¢4| is nonincreasing whenever it exceeds 1 = lim,_, 11 [¢)5|. We next
compute that the sectional curvature K; evolves by

(K1), = (K1), + (n+2) % (K1), +2 [K2 + (n— 1) K2,
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hence conclude that its minimum is nondecreasing. To understand Ky, we consider
the scale-invariant measure of the difference between the two sectional curvatures
given by

a=¢2(K1—K0).
A key step in the proof is to notice that a satisfies an attractive evolution equation

2
at=ass+(n—4)%as—4(n—l)%a,

(4 Y2
which implies that a is uniformly bounded. To understand v;, we make use of the
observation that 1, a, and the curvatures satisfy the relations
a

The main conclusions of this part of the proof may be organized as

CLAM 1. Let g be a solution of the Ricci flow such that |¢s| <1 and R > 0
instially, and let o = sup |a(-,0)|. Then:

(1) For as long as the solution exists, || < 1.
(2) For as long as the solution exists,

a

[0
g SEi-Ko< o

e

(3) (K1), 18 nondecreasing.

(4) There exists C = C (n, ) such that for as long as the solution exists,

C

[Rm| < 2

(5) For as long as the solution exists, R > 0 and 1y < 0.

(6) ? is a uniformly Lipschitz-continuous function of time; in fact, one has

(02),| <2(a+n).
(7) If g (t) exists for 0 <t < T, then limy ¢ exists for each x € [—1,1].

4. The solution keeps its profile

We call local minima of x — 1 (x,t) necks and local maxima bumps. We are
interested in solutions whose initial data has at least one neck. The second part of
the proof is to establish the sense in which the profile of the initial data persists, in
particular to show that the solution will become singular at its smallest neck and
nowhere else.

We begin with the observation that the form of equation (2.2) allows one to
apply the Sturmian theorem [1]. This says that the number of necks cannot increase
with time, and further that all bumps/necks will be nondegenerate maxima/minima
unless one or more necks and bumps come together and erase each other.

We next derive upper and lower bounds for the rate at which a neck shrinks.
These estimates show that a singularity will develop at the smallest neck in finite
time, unless the solution loses all its necks first.

The final step in this part of the proof is to show that no singularity occurs
on the ‘polar cap’: the region between the last bump and the pole. To do this, we
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first use the tensor maximum principle to show that the Ricci curvature is positive
there. Then we prove that when 5 > 0 is chosen sufficiently small, the quantity

a
b= =gk - Kol
remains bounded in a neighborhood B of the pole. Because the exponent 1 breaks
scale invariance, b may be regarded as a pinching inequality for the curvatures on
the polar cap. The bound on b thus lets us apply a blow-up argument which shows
that singularity formation on a polar cap under our hypotheses would lead to a
contradiction.
The main results of this part of the proof compose

CLAIM 2. Let g be a solution of the Ricci flow such that |s| < 1 and R > 0.
Assume that the solution keeps at least one neck.
(1) At any time, the derivative s has finitely many zeroes. The number of
zeroes is nonincreasing in time. If 1 ever has a degenerate critical point
(one where s = 1ss = 0 simultaneously) the number of zeroes of s
drops.
(2) There exzists a time T bounded above by Tmin(0)2/(n — 1) such that the
radius Tmin(t) of the smallest neck satisfies

(n—1)(T —1) < rmin(t)? < 2(n —1)(T —t).
(3) The solution is concave (55 < 0) on the polar caps.
(4) Let z, (t) denote the right-most bump. If that bump persists, then the
limit D = limy »7 ¥(24(t),t) ezists. If D > 0, no singularity occurs on
the polar caps.

5. The solution converges to a shrinking cylinder

In the third part of the proof, we derive estimates which indicate that a neck-
pinch asymptotically approaches the shrinking cylinder soliton (1.2). We start by
considering the quantity

K
F = —F(l)logKl.

Notice that F' is positive in a neighborhood of a neck. Writing K = —Ko and
L = K; to simplify the notation, one computes that F' evolves by

logL — 1 2—logL\ KL? s\ K + L
F,=AF+2(—=""" | L,F,+ [ =—22 s _op (L8 2QK
¢ +(LlogL>”+(1ogL)L3 ¥ [ T

where K
P=(n-1)logL - ZI (logL —1)

and
2

K
Q:n—l—ﬁ(logL—l)—F.
Note that the Laplacian of a radially symmetric function is given by

0? 0
A
0s? 1 Os
An application of the maximum principle lets us bound F' from above when it is
positive and K; = L is sufficiently large. The value of this estimate is that the



THE RICCI FLOW NECKPINCH 7

factor log K7 breaks scale invariance. Our bound on F' thus shows that Ko/K;
becomes small near a forming neckpinch.
The main results obtained in this part of the proof are as follows.

Cramm 3. Let g(t) : 0 <t < T be a mazrimal solution of the Ricci flow such
that |¢s| <1 and R > 0. Assume that the solution has at least one neck.

(1) A singularity occurs at the smallest neck at some time T < oo. This
singularity is of Type I; in particular, there exists C = C (n, go) such that

C
< =
[Rm| < 77—
(2) There exists C = C (n, go) such that

K
T flog L 4 2 — log Liin (0)] < C.

(3) Let 5(t) denote the location of the smallest neck. Then there are constants
6 > 0 and C < oo such that for t sufficiently close to T, one has the

estimate
_\ 2
t i
lsw(w,)su 9 (8 8)
Tmin - IOg Tmin Tmin
in the inner layer |s — §| < 2rminy/— 10g Tmin, and the estimate
zp(x,t)<c s—3 s—3

< log
Tmin TminV — 10g T'min TminV — IOg Tmin
in the intermediate layer 2rminy/—10gTmin < s — 5§ < ri-20,

min
6. Neckpinches happen

Finally, we show that there exist initial data ¥ = v (0) meeting our hypotheses.
In particular, we construct simple examples obtained by removing a neighborhood
of the equator of a standard sphere and replacing it with a long thin neck. These
examples satisfy ¥ = /A + Bs? near the equator (for appropriate constants A and
B) and blend smoothly into the standard sphere metric on the polar caps. Our
construction justifies

CLAIM 4. There exist initial metrics
g= ds’ + \Ilzgcan

for the Ricci flow on S™*1 which satisfy | V4| < 1, have positive scalar curvature,
and possess a neck sufficiently small and a bump sufficiently large so that under the
flow, the neck must disappear before the bump can vanish. Hence these solutions
exhibit a neckpinch singularity in finite time.

References

[1] Angenent, Sigurd B. The zero set of a solution of a parabolic equation. Journal fiir die reine
and angewandte Mathematik 390, 79-96, 1988.

[2] Angenent, Sigurd B.; Knopf, Dan. An ezample of neckpinching for Ricci flow on S™t1.
Preprint.

[3] Angenent, Sigurd B.; Veldzquez, J. J. L. Degenerate neckpinches in mean curvature flow. J.
Reine Angew. Math. 482 (1997), 15-66.

[4] Feldman, Mikhail; Ilmanen, Tom; Knopf, Dan. Rotationally symmetric shrinking and ez-
panding gradient Kdahler—Ricci solitons. Preprint.



(5]

(10]
(11]

(12]
(13]

[14]

DAN KNOPF

Filippas, Stathis; Kohn, Robert V. Refined asymptotics for the blowup of us — Au = uP.
Comm. Pure Appl. Math. 45 (1992), no. 7, 821-869.

Giga, Yoshikazu; Kohn, Robert V. Asymptotically self-similar blow-up of semilinear heat
equations. Comm. Pure Appl. Math. 38 (1985), no. 3, 297-319.

Giga, Yoshikazu; Kohn, Robert V. Characterizing blowup using similarity variables. Indiana
Univ. Math. J. 36 (1987), no. 1, 1-40.

Giga, Yoshikazu; Kohn, Robert V. Nondegeneracy of blowup for semilinear heat equations.
Comm. Pure Appl. Math. 42 (1989), no. 6, 845-884.

Hamilton, Richard S. The formation of singularities in the Ricci flow. Surveys in differential
geometry, Vol. I (Cambridge, MA, 1993), 7-136, Internat. Press, Cambridge, MA, 1995.
Hamilton, Richard S. Four-manifolds with positive isotropic curvature. Comm. Anal. Geom.
5 (1997), no. 1, 1-92.

Perelman, Grisha. The entropy formula for the Ricci flow and its geometric applications.
arXiv:math.DG/0211159.

Perelman, Grisha. Ricci flow with surgery on three-manifolds. arXiv:math.DG/0303109.
Simon, Miles. A class of Riemannian manifolds that pinch when evolved by Ricci flow,
Manuscripta Math. 101 (2000), no. 1, 89-114.

Thurston, William P. Three-dimensional manifolds, Kleinian groups and hyperbolic geome-
try. Bull. Amer. Math. Soc. (N.S.) 6 (1982), no. 3, 357-381.

THE UNIVERSITY OF IowA
FE-mail address: dknopf@math.uiowa.edu
URL: http://www.math.uiowa.edu/ dknopf



