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1 Background and motivation

Some of the most challenging problems in geometric evolution equations stem
from efforts to understand the singularities they develop. For the Ricci flow in
particular, improving our understanding of singularities is a goal of substantial
interest, and is currently one of the main focal points of research in the subject.
Indeed, Richard Hamilton has formulated a well-developed program to use the
Ricci flow to resolve Thurston’s Geometrization Conjecture [T-82] for a closed
3-manifold M3. (See [H-95a], [H-97], [H-99], and the survey article [CC-99].)
Because one expects singularities to occur for Ricci flow evolutions starting from
a large set of initial Riemannian 3-manifolds (M3, go), the strategy for dealing
with such singularities constitutes a fundamental part of Hamilton’s program.
One of the methods for understanding singularities is to take limits of parabolic
dilations approaching a singularity and then to analyze the possible limits that
result. Such limits are called singularity models. In particular, let (M™, g (t))
be a solution of the Ricci flow on a maximal time interval 0 < ¢t < T < .
If (M™,g(t)) becomes singular in the sense that limsup, . [Rm (z,t)| = oo,
one carefully chooses points x; € M and times ¢; € (0,7) with ¢; /~ T. (The
precise criteria for making these choices are somewhat technical, and will not
be discussed here.) One dilates space by rescaling the metric so as to nor-
malize |Rm (z;,%;)|. Then one translates and dilates time so as to obtain a
new marked solution (M™,g; (t),z; : 7; <t < T;) such that the metric g; (0) is
a scalar multiple of g (¢;). In the final step, one wants to obtain a singularity
model as a pointed limit (Mo, goo (t) ; Zoo) of the sequence of marked solutions
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(M™,g; (t) ,x;), using Gromov-type compactness arguments such as those in
[H-95b]. (An excellent survey of related compactness theory can be found in
[P-97].)

This last step cannot be accomplished without an injectivity radius estimate
for the sequence (M™,g; (t),x;). Such an estimate would follow from a proof
of Hamilton’s Little Loop Lemma for solutions on compact 3-manifolds with
arbitrary initial metrics. The validity of the Little Loop Lemma would also
rule out the formation of the so-called cigar soliton as a singularity model. A
statement of the Little Loop Lemma can be found in §15 of [H-95a]. The proof
there is incomplete, but Hamilton has announced a complete (unpublished)
proof valid in dimension three for solutions with nonnegative sectional curvature.
The only reason the condition of nonnegative sectional curvature is needed is so
that one can apply a suitable Li-Yau—-Hamilton (LYH) estimate (also referred
to as a differential Harnack estimate). Such estimates became prominent in
geometric analysis through the pioneering work [LY-86] of Peter Li and Shing-
Tung Yau for the heat equation on Riemannian manifolds, and work of Hamilton
[H-88],[H-93],[H-95¢] for geometric evolution equations.

Because LYH estimates for the Ricci flow with arbitrary initial metrics on
3-manifolds are presently unknown, one must resort to various ad hoc methods
to establish the injectivity radius estimates that are critical for taking limits
of parabolic dilations, hence for studying singularities, hence for understand-
ing their geometric and topological consequences. Such methods are available
in certain special cases. For instance, Hamilton has proved an isoperimetric
inequality (§23 of [H-95a]) that implies an injectivity radius estimate for ap-
propriately chosen sequences of dilations approaching a Type I singularity of
the Ricci flow in dimension three. In dimension two, Hamilton has proved an
injectivity radius estimate crucial for establishing convergence of the flow on
82, (See §12 of [H-95a] and [C-91].) Hamilton has also proved an injectivity
radius estimate for odd-dimensional solitons that is useful for dimension reduc-
tion. (See §22 of [H-95a].) Wilhelm Klingenberg’s injectivity radius estimate is
independent of the Ricci flow but it is very useful in the study of the Ricci flow.
For Kahler manifolds with positive bisectional curvature, similarly there is an
injectivity radius estimate of Xiuxiong Chen and Gang Tian [CT-00] useful for
the study of the K&hler-Ricci flow.

There is another important case in which an injectivity radius estimate is
expected to hold — namely, for sequences with almost nonnegative curvature
operators. (The precise definition of such sequences will be given below.) Hamil-
ton has given a proof that an injectivity radius estimate should hold in this case
also, and has in fact used this result in an essential way in his classification [H-97]
of 4-manifolds with positive isotropic curvature and no essential incompressible
space form. However, his proof of this estimate (§25 of [H-95a]) appears incom-
plete, because of a gap in an essential step of the argument. The purpose of
this note is to announce a new, complete proof of an injectivity radius estimate
for such sequences.



2 The result

In order to state our result properly, it is necessary to make some definitions.
Let
{MP,g: (t),0;,F; :i € N}

be a sequence of complete marked solutions of the Ricci flow

9 () = ~2Re (g (1)

ot
defined on a common time interval (a,w), where —oo < a<0<w< oo Each
solution is marked by an origin O; and a frame F; = {e}, ceey eﬁb} at O; which

is orthonormal with respect to g; (0). We say such a sequence has uniformly
bounded geometry if there exists a family {Cy : K € NU{0}} of constants such
that

sup sup |V*Rm(g;)|, <Ch.
1EN M; x (a,w) ¢

We denote the smallest eigenvalue of the curvature operator
Rm; (z,t) = Rm (g; (t))], : A*ToM; = A*To M;
by A\ (Rm;) (z,t). We say a sequence
{MZ},g:(t),0;,F; :i € N}

with uniformly bounded geometry is a sequence with almost nonnegative curva-
ture operators if the following three conditions hold:

Assumption 1 There exists a sequence §; N\, 0 such that
-1 S —5,' S )\1 (Rmz) (.’L’,t)
for all z € M; and t € (a,w).
Assumption 2 The diameters are tending to infinity, namely
lim [diam (M7, ¢; (0))] = oo.
71— 00
Assumption 3 Each origin O; is a bump-like point of positive curvature at
time ¢ = 0; in other words, there exists € > 0 such that for all 1,

/\1 (Rm i) (Oi,O) 2 E.

Having established the necessary notation, we now announce the following;:

Theorem 1 For any sequence with almost nonnegative curvature operators and
sect(gi) (,0) <1 for all x € M; and i € N, there exists a subsequence

{MZ,g:(t),0;, Fi}

such that for all i,
inj g,(0) (05) > 1.



Remark 2 This result is equivalent to Theorem 25.1 of [H-95a]. But as will be
explained below, there appears to be a gap in an essential step of the proof given
there.

Remark 3 Assumption 1 is automatically satisfied in dimension three if the
sequence {M?P,g;(t),0;, F;} arises from dilations about a singularity. This

follows from §24 of [H-95a], [I-93], or §4 of [H-99].

Remark 4 If Assumption 2 does not hold (namely, if the diameters are uni-
formly bounded) then Theorem 1 is not needed for the purpose of determining
geometrizability in the special case that all M3 are topologically the same closed
manifold. Indeed, if one has an injectivity radius estimate for a subsequence,
then one can take a limit using the techniques in [H-95b]. On the other hand, if
no subsequence satisfies an injectivity radius estimate, then the original sequence
collapses. In the (typical) case that all M3 are topologically a fized smooth 3-
manifold M3, this collapse implies by Cheeger—Gromov theory [CG-86, CG-90]
that M3 is a graph manifold (all of which are known to be geometrizable).

Remark 5 In future work, we hope to weaken Assumption 8 by addressing the
split case that some but not all of the eigenvalues of the curvature operator Rm ;
can be uniformly bounded from below by € > 0 at O; at time 0.
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3 The method of proof

In this section, we outline our proof of Theorem 1. The details of the proof
appear in [CKL-01].

Our method follows essentially the same four steps as does the argument
given in §25 of [H-95a], namely:

Stepl Use Assumptions 1 and 2 to find arbitrarily long minimizing geodesics
along which the curvature is arbitrarily close to nonnegative.

Step 2 Use Assumptions 1 and 3 and the strong maximum principle to show
that curvature is uniformly positive on large balls centered at the origins.

Step 3 Construct sets which mimic the sublevel sets of a Busemann function.
Show that these sets are uniformly bounded in an appropriate sense.

Step 4 Use a second-variation argument along the long geodesics found in Step
1 to rule out short geodesic 1-gons in these sets.



However, Step 3 differs in quite significant ways from the approach found
in [H-95a]. In order to motivate our departure from the methods employed
there, let ST~' denote the unit (n — 1)-sphere in R*. Because the frame F;
induces a canonical isometry R* — T, M;, there is a well-defined function
o; : S — (0,00] denoting the distance to the cut locus in unit directions
from the origin in (M7, g; (0)). Before he has ruled out collapse of the sequence
(M2, 9;(0)), Hamilton claims that the o; converge to a continuous function
loo : S — [0, 00] defined by

loo (V) = lim o (V).
in particular asserting that this limit is independent of the sequence V; — V.
Using the claimed continuity of £, in an essential way, Hamilton constructs sets
which mimic the sublevel sets of the Busemann function.

An important step of Hamilton’s argument that £, is well-defined and con-
tinuous is the construction of a Jacobi field in a geodesic tube for the case
that expo, (¢;Vi) = expg, ((;W;) for a sequence of distinct vectors such that
|V; — W;| — 0. The following example indicates why this approach encounters
difficulties. It is not a counterexample to Hamilton’s claim, because it does not
include bump-like points of positive curvature. But it does illustrate the diffi-
culty in proving that claim before one has ruled out collapse of the sequence.
In particular, we do not see why the expression Hamilton writes out using a
degenerating sequence of geodesic 2-gons yields a nontrivial Jacobi field which
vanishes at its endpoints.

Example 7 Consider a sequence {7;2 i=1,2,... } of collapsing flat tori with
fundamental domains

[—i,i] x [—11] C R
11

Take O; = (0,0), and define constant-speed geodesics

-
\/zi 1] _)7;2

ag, ﬂl : loa

by
ai(s):<s,ﬁ> and ,Bi(s)z(s,—ﬁ).

Then length a; = length 8; = 1 for all i. But o; and §; converge in the universal
cover R? to the segment s — (s,0) defined for s € [0,1]. Since R? is flat, there
is mo nontrivial Jacobi field which vanishes at its endpoints.

One can also construct ‘local counterexamples’ with constant positive curva-
ture by removing small neighborhoods of the cone points from S?/Z; for i € N,
and letting i — oo. This construction does not produce global counterexamples,
since gluing thin infinite cylinders 811/(% x (0,00) to both ends and smoothing
the metric will not result in metrics of a}most nonnegative curvature.



In the remainder of this section, we shall describe our implementation of the
four main steps in the proof, giving particular attention to the innovations in
Step 3 that are essential to our strategy.

3.1 Step 1 — finding ray-like directions

The goal of this step of the proof is to find arbitrarily long minimizing geodesics
along which the curvature is arbitrarily close to nonnegative.
For each marked manifold {MZ, g, (¢) , O;, F;}, the frame F; defines a canon-
ical isometry
I : (]Rnagcan) - (TOiMz'agi (0170)) .

Thus there is for each i a well-defined map o; : SP™' — (0,00] such that
o; (V) is the distance to the cut locus of g; (0) in the direction identified with
V € 8?7, Let & (V) denote the set of all sequences {V;} C S ! such that
lim; o0 |Vi = V]| gean = 0. In contrast to the function £, introduced by Hamilton,

we define oo, : ST = [0, 00] by

000 (V) = sup (lim sup g; (V,)) .
S(V) \ i—oo

Hamilton defined a set D of distinguished directions by D = £ (c0). Instead,
we define a set R of ray-like directions for the sequence {MZ, g; (0),0;, F;}
by

Roo = 0 (00).

Remark 8 Along the lines of Hamilton’s reasoning, if one could show that £
were well-defined and continuous, then for each V € {3} (), one would have
lim; oo 0; (V) = 00. In contrast, we have V € Ry if and only if there is a
subsequence {Vi,} from S~ such that Vi; = V and oy, (Vi;) — oo. This
necessitates the introduction of the parameter L in our definition of the replace-
ments for the sublevel sets N; (L, K) of a Busemann function in Step 3, below.
This parameter complicates the proof there that the sets N; (L, K) are eventually
bounded uniformly.

Remark 9 With our definition, Roo may become smaller each time we pass to
a subsequence. Steps 8 and 4 of our proof address this issue carefully.

The main observation of Step 1 of our construction is that R, is compact
and nonempty. If V € R, then there exists {Vij} Cc 8™ ! such that V; =V

and o;; (V;J) — 0. Note that the curvature of <M:§, 9i; (t)) is bounded from
below by —d;; /* 0. In particular, by taking j large enough, there will be an
arbitrarily long minimizing geodesic in a direction V;; along which the curvature
is arbitrarily close to nonnegative.



3.2 Step 2 — finding large balls of positive curvature

The goal of this step of the proof is to show that we can make the curvature
positive in arbitrarily large neighborhoods of the origin by going sufficiently far
out in the sequence. The strategy is to take limits in geodesic tubes, where
an injectivity radius estimate is not needed. The curvature estimate itself then
follows from the strong maximum principle, which lets us extend local conditions
to arbitrarily large sets.

Part 1 In the first part of Step 2, Hamilton shows that any sequence having
uniformly bounded geometry contains a subsequence that is preconvergent in
geodesic tubes, meaning that for every direction V € 81"_1 and every length
L > 0, the pullbacks of g; () converge uniformly in each C* norm to a solution
of the Ricci flow that exists for ¢ € (a,w) in a geodesic tube of length L in the

direction V. This part of the proof uses familiar covering-space arguments.

Part 2 In the second part of the proof, we find a subsequence that is precon-
verging to positive curvature, meaning that for each p > 0, there are n(p) > 0
and ¢ (p) such that Ay (Rm;) (x,0) > n(p) for all i« > ¢(p) and all z whose
distance from O; measured with respect to g; (0) is no greater than p. This is
where the strong maximum principle is used.

3.3 Step 3 — mimicking the sublevel sets of a Busemann
function

In this step, we depart significantly from the strategy suggested by Hamilton in
§25 of [H-95a], and consequently must introduce new ideas.

Part 1 The first part of Step 3 of our proof is an essential modification of
Hamilton’s construction, which itself is a modification of the construction of
the sublevel sets of a Busemann function. Recall that Gromoll and Meyer
proved that if (M™, g) is a complete noncompact manifold of positive sectional
curvature bounded above by &, then its injectivity radius can be bounded from
below by 7 /+/k. A familiar way to prove this is to fix an origin O € M", use the
rays emanating from O to construct a Busemann function, use that Busemann
function to construct a totally convex neighborhood N of O, and then use a
second variation argument along those rays to rule out short geodesics in the
neighborhood N.

Our modified construction still follows this basic model. Given length scales
K (like 1) and L (large), we construct sets N; (L, K) which act as substitutes
for the sublevel sets b~ (—o0, K] of a Busemann function b. (The corresponding
sets in §25 of [H-95a] are constructed using those V for which £, (V) = oo, but
our proof avoids using the function £,.) We introduce the parameter L in the
definition of N; (L, K) as a requirement that the geodesic segments used in its
definition be of length at least L. These segments act as substitutes for the rays
used in the construction of a Busemann function. Each set N; (L, K) is compact



and weakly star shaped with respect to O;. Moreover, N; (L, K) contains the
closed ball of radius min {7, K}, and is contained in the closed ball of radius
max {L, K'}. However it is essential for the remainder of the proof to show that
the sets N; (L, K) are uniformly bounded independently of L, at least for all 4
larger than some I (L).

Part 2 As mentioned above, the second and most critical part of Step 3 is to
bound the sets N; (L, K) appropriately. This step is the most difficult part of
our entire proof, and contains the main innovations of our method.

We begin by showing that for any £ > 0, we can (after passing to a suitable
subsequence) find an e-net in R, namely a finite subset {V,} such that no
member of R, lies more than distance ¢ away from some V,,, and such that the
lim sup in the definition of o (V) is actually attained as a limit for each V.
Construction of this e-net is essential to ensure robustness under the action of
passing to further subsequences.

Then we establish the sense in which the sets N; (L, K) are bounded. Note
that we do not quite show that the N; (L, K) are uniformly bounded. Instead,
we prove the following critical:

Boundedness Property. Any sequence preconverging to positive
curvature contains a subsequence for which there exists a constant
C < oo depending on K such that for each L € (0, 00), there exists
I (L) such that for all ¢ > I (L), we have

N;(L,K) C B; (0;,C).

This result is absolutely crucial to the remainder of the proof. Note that if
M,; C B(0;,L), then N;(L,K) = M;. In particular, if each M; is compact,
then N; (diam (M;), K) = M,;. This illustrates the need for the restriction in
the Boundedness Property that i be large enough, depending on L. The lack of
knowledge that £, (or o) is continuous requires us to introduce the parameter
L in the definition of N; (L, K'). However, this also makes it much more difficult
to prove that the sets N; (L, K) are uniformly bounded. By contrast, this fact
would have been obvious in the corresponding part of §25 of [H-95a] — if one
knew that £, were well-defined and continuous. We refer the reader to [CKL-01]
for the details of the proof of this result, in which we use the e-net construction
in a fundamental way.

3.4 Step 4 — ruling out short geodesics

The final step in our proof is essentially the same as the analogous argument
in §25 of [H-95a]. Roughly speaking, the argument is as follows: to obtain a
contradiction, one may suppose that for all i large enough there exists a geodesic
1-gon (unit-speed closed geodesic which is smooth everywhere except possibly
at its base point) B; of length L (8;) < 2 and such that 3; is the shortest element
of the set of all nondegenerate geodesic 1-gons contained in N; (L,1). In the



easier case that there exists a subsequence along which each §; is smooth at its
base point, one obtains a contradiction by applying a second-variation argument
along minimal geodesics from f; to sufficiently distant points. In the (typical)
case that §; fails to be smooth, one perturbs §; and applies a more delicate but
essentially similar argument, again obtaining a contradiction. These arguments
complete the proof of Theorem 1.
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