
AN EXAMPLE OF NECKPINCHING FOR RICCI FLOW ON Sn+1
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Abstract. We give an example of a class of metrics on Sn+1 that evolve under the Ricci Flow into a
“neckpinch.” We show that the solution has a Type I singularity, and that the length of the neck, i.e. the

region where |Rm| ∼ (T − t)−1 , is bounded from below by c
p

(T − t)| log(T − t)| for some c > 0.

1. Preamble

This paper is the first of two in which we study singularity formation in the Ricci flow. As motivation,

consider a solution of the flow

∂tg = −2 Rc (g)(1a)

g (0) = g0(1b)

starting from an arbitrary Riemannian manifold (Mm, g0). One should not be surprised if (1) becomes

singular in finite time. Indeed, the simple estimate

∂tR = ∆R+ 2 |Rc|2 ≥ ∆R+
2

m
R2

for the evolution of the scalar curvature implies by the parabolic maximum principle that a finite-time

singularity is inevitable if the curvature ever becomes everywhere positive.

In this context, it is very surprising indeed that no explicit examples of finite-time singularities were

known until recently, except for trivial cases where the manifold is a product of constant-curvature factors,

one of which vanishes all at once. The first rigorous examples [13] of finite-time singularities which occur on

proper (compact) subsets of a manifold were constructed by Miles Simon. Here the manifold is a noncompact

warped product R×f Sn. These examples were obtained using upper barriers. Another family of examples

was constructed in [4]. Here the manifold is the holomorphic line bundle L−k over CP
n−1 with twisting

number k ∈ {1, . . . , n− 1}, and the metric g(t) is a complete U (n)-invariant shrinking gradient Kähler–

Ricci soliton. As t ↗ T < ∞, the CP
n−1 which constitutes the zero-section of the bundle disappears, while

the metric g(t) converges to a Kähler cone on the set (Cn\ {0})/Zk which constitutes the remainder of the

bundle. No rigorous constructions of nontrivial finite-time singularitites on compact manifolds have yet

appeared in the literature.

In sharp contrast to the scarcity of explicit examples, there is a substantial body of well-informed conjec-

ture about the nature of Ricci flow singularities on compact manifolds. (See for instance Section 3 of [10].)

In particular, it is strongly conjectured that curvature neckpinches should develop in finite time, where we

use the following provisional definition of a neck pinch: A solution
(

Mn+1, g(t)
)

to the Ricci flow which

becomes singular at time T <∞ has a neck pinch if there exist diffeomorphisms φt : R × Sn → N(t) where

N(t) is some proper open subset of Mn+1 such that the metric g(t) remains regular on Mn+1 \N(t), and

such that the pullback metric φ∗t (g(t)) approaches a “shrinking cylinder” metric

ds2 + r (t)
2 · gcan
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in C∞
loc on the cylinder R×Sn as t↗ T , where gcan is the round metric of radius 1 on Sn and limt↗T r(t) = 0.

Except for a sphere shrinking to a round point, the neckpinch is topologically the simplest singularity

which the Ricci flow can encounter. Arguably, it is also the most important, at least with respect to

the goal of obtaining topological information from the Ricci flow. Indeed, much effort has been exerted

to understand singularity formation (especially in dimensions three and four) by the strategy of forming

sequences of parabolic dilations at a developing singularity. Such sequences
(

Mn+1, gj (t)
)

are defined by

gj(t) := λjg(tj +
t

λj
), −λjtj ≤ t < λj(T − tj),

where tj ↗ T and λj ↗ ∞. In order to obtain information from the Ricci flow about the geometry of the

original manifold near the singularity and just prior to its formation, one studies the properties of limits of

these dilations. (See for example [10, 11] and the recent articles [14, 15].)

The present paper and its successor are not directly relevant to topological applications of the Ricci

flow, however. Rather, they are inspired by the long tradition of singularity analysis for nonlinear pde and

geometric evolution equations.

In this paper, we demonstrate the existence of neckpinch singularities on compact Riemannian manifolds,

in particular for an open set of rotationally-symmetric initial metrics on topological spheres Sn+1. Our main

result is the following:

Theorem 1.1. If n ≥ 2, there exists an open subset of the family of metrics on Sn+1 possessing SO(n+ 1)

symmetries such that the Ricci flow starting at any metric in this set develops a neckpinch at some time

T < ∞. The singularity is rapidly-forming (Type I), and any sequence of parabolic dilations formed at the

developing singularity converges to a shrinking cylinder soliton

ds⊗ ds+ 2(n− 1)(T − t)gcan.

This convergence takes place uniformly in any ball of radius

o

(

√

(T − t) log
1

T − t

)

centered at the neck.

Furthermore, there exist constants 0 < δ,C < ∞ such that the radius ψ of the sphere at distance σ from

the neck pinch is bounded from above by

(2) ψ ≤
√

2(n− 1)(T − t) +
Cσ2

− log(T − t)
√
T − t

for |σ| ≤ 2
√

−(T − t) log(T − t), and

(3) ψ ≤ C
σ

√

− log(T − t)

√

log
σ

√

−(T − t) log(T − t)

for 2
√

−(T − t) log(T − t) ≤ σ ≤ (T − t)
1

2
−δ.

The class of initial metrics for which we establish “neck pinching” is essentially described by three con-

ditions: (i) the initial metric should have positive scalar curvature, (ii) the sectional curvature of the initial

metric should be positive on planes tangential to the spheres {x} × Sn, and (iii) the initial metric should

be “sufficiently pinched.” See Section 8 for details. One difference between our approach and Simon’s [13],

is that Simon assumes that the Ricci curvature of the meridians R × {p} (p ∈ Sn) is negative, which can

happen if the manifold Mn+1 is a cylinder R × Sn, but not if Mn+1 is a sphere Sn+1.
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Finally, in Section 10, we consider the special case of a reflection-symmetric metric with one neck. In this

situation we prove that the singularity occurs only on the totally geodesic Sn which constitutes the equator,

provided the diameter of
(

Mn+1, g(t)
)

remains bounded as t ↗ T . It is not clear to us that this diameter

must indeed always remain bounded. However, a more detailed analysis of the asymptotics of the neckpinch,

which we present in a subsequent paper, does show that this hypothesis is met for a subset of the solutions

considered here.

The results obtained in the present paper strongly resemble familiar theorems for the rotationally symmet-

ric mean curvature flow. There is a vast body of work on singularity formation for that flow. A pioneering

paper in the rotationally symmetric case is [12], and a more general approach to such singularities is consid-

ered in [2]. Aspects of the argument for the Ricci flow are significantly more difficult than the corresponding

arguments for the mean curvature flow, however, in part because one must work much harder in the present

case to control the solution on the “polar caps.” (See Section 5.4.)

In the successor to this paper, we will remove the hypothesis of rotational symmetry and thereby derive

formal matched asymptotics for fully general neckpinch singularities. We will also develop more detailed

asymptotics for the rotationally-symmetric case.

These extend and generalize the results obtained in Section 9 below, and indicate that the error bounds

in Lemma 9.4 are sharp. Examples of this sort of analysis for the semilinear reaction-diffusion equation

ut = ∆u+up can be found in [6, 7, 8] and [5]. Rigorous matched asymptotics for slowly-forming singularities

of the mean curvature flow were developed in [3].

Acknowledgement. The authors wish to express their gratitude for the hospitality and partial support

provided by the National Center for Theoretical Sciences in Hsinchu, Taiwan. It was during their 2002

summer Workshop on Geometric Evolution Equations that the original observations in this paper were

made. The authors also wish to thank Miles Simon for several stimulating conversations in Hsinchu, Taiwan.

2. The equations

We consider metrics on Sn+1 given by

(4) g = ϕ(x)2dx⊗ dx + ψ(x)2ĝ,

in which ĝ ≡ gcan is the metric of constant curvature 1 on Sn. We have punctured the sphere Sn+1 at its

north and south poles P±, and identified the remaining manifold with (−1, 1)×Sn(1), with x the coordinate

on (−1, 1) and Sn(1) the unit sphere.

2.1. Coordinates. The coordinate x is ungeometric: a more geometric quantity is the distance s to the

equator given by

(5) s(x) =

∫ x

0

ϕ(x)dx.

One could introduce s as a new coordinate, but for logical consistency we will adopt the following convention:

in this paper all functions (tensors, forms, etc.) defined on Sn+1 \ {north & south poles} will be functions

of the x variable. Whenever we write a relation of the type f = f(s), it is to be understood as shorthand

for f = f(s(x)) (or f = f(s(x, t)) for evolving metrics).

The “derivative with respect to s” is given by

(6)
∂

∂s
=

1

ϕ(x)

∂

∂x
.
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We also define

ds = ϕ(x)dx

even when the metric evolves, in which case standard notation would have suggested ds(x, t) = sxdx+ stdt

instead.

With this notation the metric is

g = (ds)2 + ψ2ĝ.

2.2. Curvature tensors. The Riemann tensor is completely determined by the sectional curvatures of

the 2-planes perpendicular to the spheres {x} × Sn, and the 2-planes tangential to these spheres. These

curvatures are (respectively)

(7) K0 = −ψss
ψ
, K1 =

1 − ψ2
s

ψ2
.

In the ungeometric coordinate x the Ricci tensor of the metric g given by (4) is

Rc = n

{

−ψxx
ψ

+
ϕxψx
ψϕ

}

(

dx
)2

+

{

−ψψxx
ϕ2

− (n− 1)ψ2
x

ϕ2
+
ψϕxψx
ϕ3

+ n− 1

}

ĝ.

In the geometric coordinate this simplifies to

Rc = nK0(ds)
2 + [K0 + (n− 1)K1]ψ

2ĝ(8)

= −nψss
ψ

(ds)2 +
{

−ψψss − (n− 1)ψ2
s + n− 1

}

ĝ.

The scalar curvature is given by

R = gjkRjk(9a)

= nK0 + n [K0 + (n− 1)K1](9b)

= 2nK0 + n(n− 1)K1(9c)

= n

{

−2
ψss
ψ

+ (n− 1)
1 − ψ2

s

ψ2

}

.(9d)

2.3. Evolution equations. Suppose we have a time dependent family of metrics g(·, t) which evolves by

the Ricci flow (1). Then the “radius” ψ(x, t) will satisfy

(10) ∂tψ = ψss − (n− 1)
1 − ψ2

s

ψ
.

The quantity ϕ(x, t) evolves by

(11) ∂tϕ = n

{

ψxx
ϕψ

− ϕxψx
ψϕ2

}

= n
ψss
ψ
ϕ.

The equations (7)–(11) can also be found in [13] (Propositions 2.1 and 4.1).
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3. Derived equations

3.1. Equations for powers of ψ. Various powers of ψ satisfy equations similar to (10). If we set u = ψk

for any k 6= 0, then

ut = kψk−1ψt

= kψk−1ψss + (n− 1)kψk−2ψ2
s − (n− 1)kψk−2

= uss +
n− k

k

u2
s

u
− (n− 1)ku1− 2

k .

(12)

In particular, for k = n we get

(13) ut = uss − n(n− 1)u1− 2

n .

For k = 2 we get

(14) ut = uss +
n− 2

2

u2
s

u
− 2(n− 1).

3.2. Equations for derivatives of ψ. The partial derivatives ∂t and ∂x commute, but ∂t and ∂s do not.

To commute them, we must use the following identity

(15) [∂t, ∂s] = [∂t,
1

ϕ(x, t)
∂x] =

−ϕt
ϕ2

∂x = −nψss
ψ
∂s.

Thus we find

∂t(ψs) = ∂s(ψt) + [∂t, ∂s]ψ

= ∂sssψ + (n− 2)
ψsψss
ψ

+ (n− 1)
1 − ψ2

s

ψ2
ψs;

that is, the quantity v = ψs satisfies the heat equation

(16) ∂tv = vss +
n− 2

ψ
vvs +

n− 1

ψ2
(1 − v2)v.

For w = ψss we find after a similar computation

∂tw = wss + (n− 2)
ψs
ψ
ws − 2

w2

ψ
− (4n− 5)

ψ2
s

ψ2
w +

n− 1

ψ2
w

− 2(n− 1)
ψ2
s(1 − ψ2

s )

ψ3
,

(17)

i.e.

∂t(ψss) =
(

ψss
)

ss
+ (n− 2)

ψs
ψ

(

ψss
)

s

− 2
ψ2
ss

ψ
− (4n− 5)

ψ2
s

ψ2
ψss +

n− 1

ψ2
ψss

− 2(n− 1)
ψ2
s(1 − ψ2

s )

ψ3
.

(18)

We also have equations for ψt and K = ψss/ψ(= −K0), namely

∂t (ψt) = (ψt)ss + (n− 2)
ψs
ψ

(ψt)s

− 2n

ψ
ψ2
t + (2n− 1)2

ψ2
s

ψ2
ψt −

(4n− 1) (n− 1)

ψ2
ψt

− 2n (n− 1)
1 − ψ2

s

ψ3

[

(n− 1)
(

1 − ψ2
s

)

+ ψ2
s

]

(19)
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and

∂tK =Kss + n
ψs
ψ
Ks − 2K2

− 4(n− 1)
ψ2
s

ψ2
K +

2(n− 1)

ψ2
K − 2(n− 1)

ψ2
s

ψ4

(

1 − ψ2
s

)

.

(20)

Another way of deriving these equations is based on the observation that the Ricci tensor is given by

Rc = −nψss
ψ

(ds)2 − ψψtĝ,

so that the two quantities −nK and −ψψt are the eigenvalues of the Ricci tensor. Under Ricci flow, this

tensor evolves by

(21) ∂t(Rc)jk = (∆Rc)jk + 2(Rm)pjkq(Rc)pq − 2(Rc)pj (Rc)pk,

where all contractions are done with respect to the evolving metric g. (See Section 5.4 below.)

3.3. Curvature Pinching. Consider

a = ψψss − ψ2
s + 1 = ψ2(K1 −K0).

This quantity provides a scale invariant measure for the difference of the two sectional curvatures K0 and

K1.

Lemma 3.1. The quantity a evolves by

at = ass + (n− 4)
ψs
ψ
as − 4 (n− 1)

ψ2
s

ψ2
a.

Proof. Note that

a = ψw − v2 + 1,

where v = ψs and w = ψss are defined above in Section 3.2. One computes that

as = ψsw + ψws − 2vvs = ψws − vw

and

ass = ψsws + ψwss − vsw − vws = ψwss − w2.

Then recalling equation (10) for the evolution of ψ , equation (16) for the evolution of v, and equation (17)

for the evolution of w, one derives the equation

at = wψt + ψwt − 2vvt

= w

[

w − (n− 1)
1 − v2

ψ

]

+ψ

[

wss + (n− 2) vws

ψ − 2w
2

ψ − (4n− 5) v
2w
ψ2

+(n− 1) wψ2 − 2(n− 1) v
2(1−v2)
ψ3

]

−2v

[

ws + (n− 2)
vw

ψ
+ (n− 1)

v(1 − v2)

ψ2

]

= ψwss − w2 + (n− 4) vws − (5n− 8)
v2w

ψ
− 4(n− 1)

v2
(

1 − v2
)

ψ2

= ass + (n− 4)
v

ψ
as − 4(n− 1)

v2

ψ2
a.

�

Applying the maximum principle immediately yields the following estimate.
6



Corollary 3.2. sup |a (·, t)| ≤ sup |a (·, 0)|.

3.4. Curvature Splitting. The following evolution equations will be useful when we consider the asymp-

totics of a neck pinch. We recall that we earlier defined K = −K0 = ψss/ψ, and we now write L = K1.

With this notation, one can write the evolution equation (20) for K as

(22) Kt = ∆K + 2 (n− 1)KL− 2K2 − 2 (n− 1)
ψ2
s

ψ2
(K + L) ,

since the Laplacian of a function is given by

∆f =
∂2f

∂s2
+ n

ψs
ψ

∂f

∂s
.

For L we have:

Proposition 3.3. If g(·, t) = ϕ2(dx)2 + ψ2ĝ is a solution to the Ricci flow, then L evolves by

Lt = ∆L+ 2
ψs
ψ
Ls + 2

[

K2 + (n− 1)L2
]

(23a)

= ∆L− 4
ψ2
s

ψ2
(K + L) + 2

[

K2 + (n− 1)L2
]

.(23b)

Proof. Using equations (10) and (16), one computes that

Lt = −2
ψs
ψ2

(ψs)t − 2
L

ψ
ψt

= −2
ψψsss
ψ2

− 2 (n− 1)
ψ2
s

ψ2
(K + L) + 2

(

ψ2
s

ψ2
− L

)

K + 2 (n− 1)L2.

Then observing that

Ls = −2
ψs
ψ

(K + L) ,

one calculates

Lss = −2
ψψsss
ψ2

+ 6
ψ2
s

ψ2
(K + L) + 2

(

ψ2
s

ψ2
− L

)

K − 2K2.

Combining these equations yields

Lt = Lss − 2 (n+ 2)
ψ2
s

ψ2
(K + L) + 2

[

K2 + (n− 1)L2
]

,

whence the result follows. �

Corollary 3.4. Lmin(t) is nondecreasing; and whenever Lmin(0) 6= 0, one has

(24) Lmin(t) ≥
1

Lmin(0)−1 − 2 (n− 1) t
.

Now consider

(25) F =
K

L
logL.

Then using equations (22) and (23a), one computes the following for F .

Proposition 3.5. If g(·, t) = ϕ2(dx)2 + ψ2ĝ is a solution to the Ricci flow with L > 1, then F evolves by

(26) Ft = ∆F + 2

(

logL− 1

L logL

)

LsFs +

(

2 − logL

logL

)

KL2
s

L3
− 2P

(

ψs
ψ

)2
K + L

L
+ 2QK,

where

P = (n− 1) logL− 2
K

L
(logL− 1)
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and

Q = n− 1 − K2

L2
(logL− 1) − F.

The hypothesis L > 1 is needed here to keep logL positive, and in particular nonzero.

4. Boundary conditions

All quantities considered here are defined for −1 < x < 1. The “radius” ψ(x, t) must vanish at x = ±1,

for otherwise the manifold would fail to be a sphere. At these endpoints the derivative of ψ is also prescribed.

Proposition 4.1. Let g = ϕ(x)2(dx)2 + ψ(x)2ĝ be a smooth Riemannian metric on (−1, 1) × Sn which

extends to a smooth metric on Sn+1. Then

lim
x→±1

ψs = ∓1.

Write s̄ =
∫ 1

0
ϕ(x)dx for the distance from the equator x = 0 to the north pole x = 1. Then ψ/(s̄−s) extends

to a smooth even function of s̄− s, so that

ψ = (s̄− s) + A3(s̄− s)3 + · · · +A2m+1(s̄− s)2m+1 + · · · .

Proof. The quantity s̄− s is the distance from any point on {x}×Sn to the north pole. Thus the expression

g = (ds)2 +ψ2ĝ is a representation of the metric g in geodesic polar coordinates, with s̄− s being the radius.

In this light, the proposition is a standard result from Riemannian geometry. �

5. The shape of the solution

5.1. Derivative estimates.

Proposition 5.1. Assume g(·, t) = ϕ2(dx)2 + ψ2ĝ is a solution to the Ricci flow for 0 ≤ t < T . Then

1 ≤ sup |∂sψ(·, t)| ≤ sup |∂sψ(·, 0)|.

Proof. One applies the maximum principle to (16). This equation says that at any maximum of ψs which

exceeds 1, one has

∂tψs ≤
n− 1

ψ2
(1 − ψ2

s)ψs < 0.

Similarly, at any minimum of ψs with ψs < −1, one has ∂tψs > 0. The result follows once we observe that

by Proposition 4.1, g extends to a smooth metric on Sn+1 only if sup |∂sψ(·, 0)| ≥ 1. �

Proposition 5.2. Assume g(·, t) = ϕ2(dx)2 +ψ2ĝ is a solution to the Ricci flow for 0 ≤ t < T with |ψs| ≤ 1

and initially positive scalar curvature. Then R > 0 and ∂tψ < 0 on Sn+1 × [0, T ).

Proof. The scalar curvature satisfies Rt = ∆R + 2|Rc|2 ≥ ∆R, so positivity of R is preserved.

Our assumption |ψs| ≤ 1 forces the sectional curvature K1 = ψ−2(1−ψ2
s ) to be nonnegative everywhere.

If at any point one has ψss ≤ 0, then K0 = −ψss/ψ ≥ 0, and hence ψt = ψss − (n− 1)(1−ψ2
s )/ψ < 0. If on

the other hand ψss > 0, then K0 = −ψss/ψ < 0, so that

−ψt = ψ(K0 + (n− 1)K1) = ψ(
R

n
−K0) > 0,

as claimed. �

Proposition 5.3. If |ψs| ≤ 1, then |∂t(ψ2)| ≤ 2n+ 2 sup |a(·, 0)|, where a = ψψss − ψ2
s + 1, as in §3.3.
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Proof. We showed in Corollary 3.2 that |a| ≤ sup |a(·, 0)|. By definition one has ψss = (a + ψ2
s − 1)/ψ, so

that

ψt = ψss − (n− 1)(1 − ψ2
s)/ψ =

a− n(1 − ψ2
s)

ψ
,

from which the proposition immediately follows. �

5.2. The limit at t = T .

Proposition 5.4. Assume g = ϕ(x, t)2(dx)2+ψ(x, t)2ĝ is a solution of the Ricci flow which at t = 0 satisfies

|ψs| ≤ 1. Then ψ(x, T ) := limt↗T ψ(x, t) exists.

Proof. The condition |ψs| ≤ 1 is preserved by Ricci flow. Hence by Proposition 5.3, ψ(x, t)2 is a uniformly

Lipschitz continuous function of time. The limit limt↗T ψ(x, t) must therefore exist for each x ∈ [−1, 1]. �

5.3. Necks and Bumps. The derivative v = ψs satisfies (16), which we can write as a linear parabolic

equation

∂tv = vss +Q v

with

Q = (n− 2)
ψss
ψ

+ (n− 1)
1− ψ2

s

ψ
.

Using ∂s = ϕ−1∂x, one can write this equation as

∂tv = ϕ−1
(

ϕ−1vx
)

x
+Q(x, t)v = A(x, t)vxx +B(x, t)vx + C(x, t)v

for suitable coefficients A, B, and C. Furthermore, at the extremes x = ±1 we have seen that ψs → ∓1.

The Sturmian theorem [1] therefore applies, and we conclude the following.

Lemma 5.5. At any time t ∈ (0, T ), the derivative v = ψs(·, t) has a finite number of zeroes, as a function

of x ∈ (−1, 1). This number of zeroes is nonincreasing in time, and at any moment t0 ∈ (0, T ) that ψ(·, t)
has a multiple zero (i.e. a point at which ψs = ψss = 0 simultaneously) the number of zeroes of ψs(·, t) drops.

We will refer to local maxima of x 7→ ψ(x, t) as bumps, and local minima as necks. The lemma says that

during any evolution by the Ricci flow of g(t) = ϕ2(dx)2 + ψ2ĝ, the number of necks cannot increase with

time, while all necks and bumps must be nondegenerate maxima/minima, except when one or more bumps

and necks come together and annihilate each other. In particular, if the number of necks does not change,

then all necks and bumps are nondegenerate.

x
* 
(t)

x
-1 1

Figure 1. A Genetically Modified Peanut
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5.4. Preserving the polar caps. In this section, we prove that the curvature remains positive on the polar

caps if it is so initially. Let x∗ (t) ∈ (0, 1) denote the location of the right-most bump, namely the largest

x ∈ (−1, 1) at which ψx(x, t) = 0. Then the “polar cap” of Sn+1 is the set ((x∗(t), 1) × Sn(1)) ∪ {P+}.

Lemma 5.6. If ψss(x, 0) ≤ 0 for x∗(0) < x < 1, then ψss(x, t) ≤ 0 for x∗(t) < x < 1 and all 0 < t < T .

To prove the lemma, we shall use the following slight modification of the tensor maximum principle

introduced in [9].

Proposition 5.7. Let {Nt, ∂Nt, g (t) : 0 ≤ t < T} be a smooth 1-parameter family of compact Riemannian

manifolds with boundary. Let S and F be symmetric (2, 0)-tensor fields on Nt such that S evolves by

∂

∂t
S ≥ ∆S + F ∗ S,

where F ∗ S denotes the symmetrized product (F ∗ S)ij = F ki Skj + Ski Fkj . Suppose that infp∈Nt
S (p, 0) ≥ 0

and that S(q, t) ≥ 0 for all points q ∈ ∂Nt and times t ∈ [0, T ). If (F ∗ S) (V, ·) ≥ 0 whenever S (V, ·) = 0,

then

inf
p∈Nt, t∈[0,T )

S(p, t) ≥ 0.

If all inequalities are strict then the proof is entirely standard, once we note that the hypotheses imply

that S can first attain a zero eigenvalue only at an interior point of Nt. To reduce the general case to the

case of strict inequalities one considers S̃ij = Sij + εeλtgij(t) for large enough λ > 0 and arbitrary small

ε > 0.

Proof of Lemma 5.6. First we show that the Ricci tensor satisfies

(27)
∂

∂t
Rc = ∆Rc + F ∗ Rc,

where F is the (2,0) tensor given by

F = (K1 −K0)
[

(n− 1)(ds)2 + ψ2ĝ
]

.

To verify (27) at any given point (x, P ) ∈ (−1, 1)× Sn we choose coordinates {y1, . . . , yn} near P on Sn in

which the standard metric ĝ has components ĝαβ = δαβ at P .

We set y0 = s so that {y0, y1, . . . , yn} is a coordinate system near (x, P ) on (−1, 1) × Sn, and adopt

the convention that Roman indices belong to {0, . . . n} while Greek indices belong to {1, . . . , n}. The only

nonvanishing components of the metric g in these coordinates are g00 = 1 and gαα = ψ2ĝαα. Observe that

all components of the Riemann tensor Rm = (Rijk`) vanish in these coordinates except Rα00α = ψ2K0 and

Rαββα = ψ4K1 (α 6= β). Similarly, all components of the Ricci tensor Rc = (Rij) vanish except R00 = nK0

and Rαα = ψ2 [K0 + (n− 1)K1]. The evolution equation (27) now follows from (21).

We have established (27) on the punctured sphere (−1, 1) × Sn. By continuity it remains valid at the

poles {±1} × Sn.

To apply Proposition 5.7, let Nt denote the topological (n+ 1)-ball

Nt = {(x, p) : x ≥ x∗ (t) , p ∈ Sn}
endowed with the metric g (t). Observe that K0 and K1 are strictly positive on

∂Nt = {x∗ (t)} × Sn,

because ψ has a local maximum at x∗ (t), and ψs has a simple zero there by Lemma 5.5. So Rc > 0 on

∂Nt. If ψ (·, 0) is strictly convex for all x ≥ x∗ (0), then Rc (·, 0) > 0 on Nt. So if Rc ever acquires a zero
10



eigenvalue, it must do so at some point p ∈ intNt and time t ∈ (0, T ). If Rc (V, V )|(p,t) = 0 for some vector

V ∈ TpNt, then (F ∗ Rc) (V, V ) = 0, because F and Rc commute. Hence Proposition 5.7 implies that Rc ≥ 0

on Nt for as long as g (t) exists. Lemma 5.6 follows immediately. �

6. Shrinking rate of a neck

In this section we consider a solution g(t) = (ds)2 + ψ(x, t)2ĝ of Ricci flow, and we define

(28) rmin(t) = min{ψ(x, t) | ψx(x, t) = 0};

i.e., rmin(t) is the radius of the smallest neck of the solution at time t. If the solution has no necks, then

rmin(t) will be undefined.

Lemma 6.1. Let g(t) = (ds)2 + ψ(x, t)2ĝ be a solution of Ricci flow with R ≥ 0. Then

(n− 1)(T − t) ≤ rmin(t)
2 ≤ 2(n− 1)(T − t)

An important direct consequence of this Lemma is that any initial metric generates a solution which must

either become singular at or before

T =
rmin(0)2

n− 1
,

or else lose all its necks before this time so that rmin(t) becomes undefined.

Proof. For all but a finite number of times ψ(·, t) will be a Morse function, and its critical values will be

smooth functions of time. The smallest critical value, i.e. rmin(t), is therefore a Lipschitz continuous function

of time. We will show that

(29) − n− 1

rmin(t)
≤ r′min(t) ≤ − n− 1

2rmin(t)
,

holds for almost all t. After integration this implies the Lemma.

Suppose that at some time t0 the function ψ(·, t0) is a Morse function, and let its smallest critical value

be attained at x(t0). Then by the Implicit Function Theorem there is a smooth function x(·) defined near

t = t0, such that ψx(x(t), t) = 0. One has

(30)

dψ(x(t), t)

dt
= ψt(x(t), t) + ψx(x(t), t)x

′(t)

= ψt(x(t), t)

= ψss(x(t), t) −
n− 1

rmin(t)
.

The first inequality in (29) follows immediately from (30) once one realizes that at a neck one has ψss ≥ 0.

To get the other inequality we recall that the scalar curvature satisfies R = 2nK0 + n(n − 1)K1, where

K0 = −ψss/ψ and K1 = (1 − ψ2
s )/ψ

2. At a neck, we therefore have

ψss = −ψK0 =
n− 1

2ψ
− R

2n
ψ

Since R > 0 holds on our solution, we find

dψ(x(t), t)

dt
≤ −n− 1

2ψ
,

whence the second inequality in (29). �

11



We note that the hypothesis R > 0 is not really necessary in this Lemma. If one assumes R ≥ −C for

some constant (which is always the case, since Rmin is nondecreasing in time) then one finds

− n− 1

rmin(t)
≤ r′min(t) ≤ − n− 1

2rmin(t)
+
C

2n
rmin(t)

From this one deduces ε(T − t) ≤ rmin(t)2 ≤ 2(n− 1)(T − t).

7. The caps stay smooth

In this section, we prove that no singularity occurs on the polar caps (i.e., they don’t melt).

Lemma 7.1. There is a constant C, depending on the solution g(t) such that

|Rm| ≤ C

ψ2
.

Simon [13, Lemma 2.3] reached the same conlusion in his setting.

Proof. We note first that by Proposition 3.2 the quantity a = ψ2(K1 −K0) remains uniformly bounded.

Since ψs is bounded, the quantity ψ2K0 = 1−ψ2
s must remain bounded. Hence ψ2K1 = ψ2K0 +a clearly

also remains bounded. The lemma follows via |Rm|2 = n(n− 1)K2
1 + 2nK2

0 . �

We now consider a solution g(t) = (ds)2 +ψ(x, t)2ĝ of Ricci flow and we let x∗(t) be the right-most bump

(i.e. x∗(t) = max{x | ψx(x, t) = 0}). By Proposition 5.3 we may assume that |(ψ2)t| ≤ C0 for some constant

C0 <∞. Since
d

dt
ψ(x∗(t), t)

2 =
(

ψ2
)

t
(x∗(t), t) + 2ψψx

dx∗(t)

dt
=
(

ψ2
)

t
(x∗(t), t)

is also bounded by C0 we conclude that

D = lim
t↗T

ψ(x∗(t), t)

exists.

Lemma 7.2. If D > 0, no singularity occurs on the cap ((x∗(t), 1) × Sn(1)) ∪ {P+}.

Proof. By Proposition 5.3, we may let C0 be an upper bound for |(ψ2)t|. We choose t1 ∈ (0, T ) so that

C0(T − t1) < D2/8. Then we have

ψ(x∗(t), t)
2 ≥ D2 − C0(T − t) >

7

8
D2

for all t ∈ [t1, T ). Next, let x1 be the unique solution of ψ(x1, t1)
2 = 3

4D
2 in the interval [x∗(t1), 1]. Our

bound on (ψ2)t implies for all t ∈ [t1, T ) that

ψ(x1, t)
2 ≤ 3

4
D2 + C0(t− t1) <

7

8
D2 < ψ(x∗(t), t)

2.

Thus we have x∗(t) < x1 < 1 for all t ∈ [t1, T ), and consequently ψs < 0 and ψss < 0 on the interval [x1, 1]

for all t ∈ [t1, T ). It follows that the distance

d1(t) = s(1, t) − s(x1, t)

from (x1, t) to the pole P+ is decreasing in time. Indeed,

d′1(t) =

∫ 1

x1

nψss
ψ

ds < 0.

12



Next let x2 ∈ (x1, 1) be defined by ψ(x2, t1)
2 = 3

8D
2. Then for t ∈ [t1, T ) we have

ψ(x2, t)
2 ≤ 3

8
D2 + C0(T − t1) <

1

2
D2,

and

ψ(x1, t)
2 ≥ 3

4
D2 − C0(T − t1) >

5

8
D2.

Thus ψ(x1, t)
2 − ψ(x2, t)

2 ≥ D2/8, and hence, crudely estimating ψ(x1, t) + ψ(x2, t) from below by

ψ(x2, t) ≥
√

3

8
D2 − C0(T − t1) ≥

√

D2/4 = D/2,

we have

ψ(x1, t) − ψ(x2, t) ≥
D2/8

D/2
= D/4.

Concavity (i.e. ψss < 0) implies that for x ∈ [x2, 1) one has

−ψs >
ψ(x1, t) − ψ(x, t)

s(x1, t) − s(x, t)
>

D/4

s(x1, t1) − s(1, t1)
≡ δ.

At this point we once again consider the quantity a = ψψss −ψ2
s + 1 from §3.3. We found that L(a) = 0,

where L is the differential operator

L = ∂t − ∂2
s − (n− 4)

ψs
ψ
∂s + 4(n− 1)

ψ2
s

ψ2
.

We also found that the quantity u = ψκ satisfies

L(u) = (4 − κ)
ψs
ψ
us +

n− 1

ψ2
(4ψ2

s − κ)u = (4 − κ)ψκ−2ψ2
s +

n− 1

ψ2
(4ψ2

s − κ)u.

In the region Q2 = [x2, 1)× [t1, T ) we have |ψs| ≥ δ. If we choose κ < 4δ2 < 4, then we have L(u) > 0 in Q2.

By the maximum principle we then have |a| ≤ Cu in Q2, for some constant C <∞. Indeed, the quantity

|a|/u must attain its maximum (C) on the parabolic boundary of Q2. At the left end (x = x2) we have

u = ψκ ≥ (D/64)κ, while |a| is bounded by sup |a(·, 0)| (Corollary 3.2). At the other vertical side of Q2,

i.e. at x = 1, we have a = 0. Since a is smooth, this implies a = O(s(1, t) − s(x, t)). On the other hand

u = ψκ with ψs = −1 at x = 1 implies that limx↗1 |a/u| = 0 holds for all t < T . Finally, at t = t1 the

quantity |a|/u is continuous for x2 ≤ x < 1, while we have just verified that |a|/u→ 0 as x↗ 1. Thus |a|/u
is bounded on the parabolic boundary of Q2, and hence bounded on Q2.

We now go through a blow-up argument. Let B2 denote the portion of our manifold Sn+1 where x ≥ x2.

Then we have a solution g(t) to Ricci flow on B2, defined for t ∈ [t1, T ). This solution has Rc ≥ 0.

Because of spherical symmetry B2 is a geodesic ball in (Sn+1, g(t)). Its radius is bounded from above by

d1(t). Since ψ = ψ(x2, t) ≥ D/2 on the boundary of B2, it follows from |ψs| ≤ 1 that the radius of B2 is

bounded from below by D/2.

Assume that the sectional curvatures of the metrics g(t) on B2 are not bounded as t↗ T . Then there is

a sequence Pk ∈ B2, tk ∈ [t2, T ) with |Rm(Pk, tk)| → ∞ as k → ∞. We may choose this sequence so that

sup
Q∈B2

|Rm(Q, t)| = |Rm(Pk , tk)|

holds for t ≤ tk. Writing xk for the x coordinate of Pk we note that ψ(xk , tk) → 0, and from |ψs| ≥ δ we

conclude

lim
k→∞

dtk (Pk , P+) = 0,

where dt is the distance measured with the metric g(t).
13



Define εk = |Rm(Pk , tk)|−1/2, and introduce rescaled metrics

gk(t) =
1

ε2k
g(tk + ε2kt).

Let C1 be the constant from Lemma 7.1 for which |Rm| ≤ C1ψ
−2 holds. Then we have

ψ(xk , tk) ≤
√
C1εk.

and, using |ψs| ≥ δ again,

dtk (Pk, P+) ≤ C1

δ
εk.

The distance from Pk to the pole P+ measured in the rescaled metric gk(0) = ε−2
k g(tk) is therefore at most

C1/δ. In particular, this distance is uniformly bounded.

Translating to the rescaled metric we find that gk(t) is a solution of Ricci flow defined for t ∈ (−ε−2
k tk, 0]

on the region B2. The Riemann curvature of gk is uniformly bounded by |Rm| ≤ 1, with equality attained

at Pk at t = 0. One may then extract a convergent subsequence whose limit is an “ancient solution” g∞(t)

of the Ricci flow on Rn+1 × (−∞, 0] with uniformly bounded sectional curvatures, and nonzero sectional

curvature at t = 0 and at some point P∗ whose distance to the origin is at most C1/δ.

We introduce the radial coordinate r = r(x, tk) = ε−1
k (s(1, tk) − s(x, tk)). The metric gk(0) = ε−2

k g(tk)

seen through the exponential map at P+ is given by

gk(0) = (dr)2 + Ψk(r)
2ĝ, with Ψk(r) = ε−1

k ψ(s(1, tk) − εkr, tk).

The metrics gk converge in C∞ on regions r ≤ R for any finite R, and the functions Ψk hence also converge

in C∞ on any interval [0, R]. The scale invariant quantity a is given by a = ψψss−ψ2
s +1 = ΨΨrr−Ψ2

r +1,

and it satisfies |a| ≤ Cψκ ≤ CεκkΨκ

k . Thus we find that the limit Ψ∞ = lim Ψk satisfies

ΨΨrr − Ψ2
r + 1 = 0.

Hence for some λ, µ one has

Ψ(r;λ, µ) =

{

1
λ sinλ(r − µ), λ <∞
r − µ λ = ∞

Since −Ψr = −ψs ∈ [δ, 1] cannot vanish, the only valid solution is the one with λ = ∞, µ = 0, i.e. Ψ∞(r) = r.

But then the limiting metric g∞ = lim gk(0) is (dr)2 + r2ĝ, i.e. g∞ is the flat Euclidean metric. This is again

impossible. �

8. Construction of the initial metric

In this section we construct a metric g0 = (ds)2 + Ψ(s)2ĝ which satisfies |Ψ′(s)| ≤ 1, R > 0, and which

extends to a smooth metric on Sn+1. We will show that the solution of Ricci flow starting at g0 has a neck

pinch, i.e. rmin(t) → 0, but the diameter of (Sn+1, g(t)) does not shrink to zero.

The particular metric we construct here is obtained from the standard unit sphere Sn+1 whose metric

is g̃ = (ds)2 + (cos s)2ĝ, by removing a (large) neighborhood of the equator and replacing it with a narrow

neck.
14



8.1. A neck with positive curvature.

Lemma 8.1. Consider the function

W (s) =
√

A+Bs2,

where A > 0 and we require 0 < B < 1 for n ≥ 3 and 0 < B < 1/2 for n = 2.

Then the scalar curvature of the metric

G = (ds)2 +W (s)2ĝ

on R × Sn is positive.

The scale invariant measure of curvature pinching, a = W (s)W ′′(s) −W ′(s)2 + 1, is bounded by

1 −B < a < 1 +B.

Proof. A simple computation shows

W (s)2

n
· R = −2W (s)W ′′(s) + (n− 1){1−W ′(s)2}

= n− 1 − 2B + (3 − n)
B2s2

W
(s)2.

Since Bs2 < A+ Bs2 = W (s)2 we find for n ≥ 3

W (s)2

n
· R ≥ n− 1 − 2B + 3 − n = 2(1 −B).

For n = 2 we get
W (s)2

n
· R ≥ n− 1 − 2B = 1 − 2B.

To estimate a we write a = WWss −W 2
s + 1 = 1

2 (W 2)ss − 2W 2
s + 1, which yields

a = B − 2
B2s2

A+Bs2
+ 1.

This implies 1 −B < a < 1 +B. �

8.2. An initial metric leading to a neck pinch. For any A > 0, B ∈ (0, 1) (or B ∈ (0, 1/2) when n = 2)

we define

ψ̂(s) = min {W (s), cos s} =

{

W (s) |s| ≤ sA,B

cos s sA,B < |s| ≤ π/2,

where sA,B is the unique positive solution of cos s =
√
A+Bs2. This piecewise smooth function clearly

satisfies |ψ̂′(s)| ≤ 1 and R > 0 for all s 6= ±sA,B.

We now smooth out the corner which ψ̂ has at sA,B . First we construct a new function ψ̆ which coincides

with ψ̂ outside a small interval Iε = (sA,B−ε, sA,B+ε) and has ψ̆ss constant in Iε. The value of the constant

is determined by requiring ψ̆ to be a C1 function. Since ψ̂ switches from increasing to decreasing at sA,B ,

we will have ψ̆ss < 0 in Iε. Moreover, we will also have |ψ̆s| < 1 in Iε, and hence the metric (ds)2 + ψ̆2ĝ will

have R > 0 everywhere.

The function ψ̆ is C1, and its second derivative ψ̆ss has simple jump discontinuities at sA,B± ε so we may

smooth it in an arbitrarily small neighborhood of sA,B ± ε in such a way that the smoothed (C∞) function,

which we will call ψA,B(s), satisfies R > 0 everywhere and coincides with ψ̂ outside of I2ε.

It is not hard to see that there is some small α > 0 for which one can execute the smoothing of the

ψ̂ = ψ̂A,B for all A ∈ (0, α) in such a way that the ψA,B coincide with ψ̂ in the interval |s| ≤ α, and such
15



that the derivatives ψ′′
A,B(s) are bounded for |s| ≥ α, uniformly in A ∈ (0, α). If this is done, then we obtain

a family of initial metrics gA,B = (ds)2 + ψA,B(s)2ĝ

• with positive scalar curvature,

• which satisfy |ψs| ≤ 1,

• which have a neck of radius rmin(0) =
√
A,

• which have a bump of height at least ψ̂A,B(α) >
√
Bα,

• for which |a| ≤ C for some constant C <∞ which does not depend on A ∈ (0, α).

Lemma 6.1 implies that the solution to Ricci flow starting from gA,B must lose its neck before t∗ =

rmin(0)2/(n − 1) = A/(n − 1). On the other hand, the solution will have a bump at some x∗(t); and

since |a| is uniformly bounded on all solutions under consideration, the height of this bump will be bounded

from below by

ψ(x∗(t), t)
2 ≥ α

√
B − Ct ≥ α

√
B − CA/(n− 1).

If A is small enough, then the neck must disappear before the bump can vanish, and thus rmin(t) → 0.

9. Cylindrical Asymptotics

In this section we consider a maximal solution g(·, t) = (ds)2+ψ2ĝ to the Ricci flow, defined for 0 ≤ t < T .

We will assume that |ψs| ≤ 1 and R ≥ 0 hold initially and hence for all time. We will also assume that the

solution always has at least one neck. Let x−(t) and x+(t) be the left- and right-most bumps, respectively,

and write W(t) = [x−(t), x+(t)].

For each t ∈ [0, T ) and x ∈ W(t) one has ψ(x, t) ≥ rmin(t) so that the sectional curvature L = K1 =

(1 − ψ2
s )/ψ

2 is bounded from above on W(t) by rmin(t)−2.

By the strong maximum principle we may assume that supW(t) |ψs(·, t)| < 1 so that L is also bounded

from below. Define

Lmin(t) = inf
x∈W(t)

L(x, t).

The evolution equation (23a) implies that Lmin(t) is nondecreasing.

Recall that in equation (25) in Section 3.4, we introduced F = K
L logL, which evolves according to (26).

Lemma 9.1. For all t ∈ [0, T ), x ∈ W(t) the scaling-invariant quantity

F̂ (x, t) =
K(x, t)

L(x, t)
(logL(x, t) + 2 − logLmin(0))

satisfies

(31) sup
W(t)

F̂ (·, t) ≤ max

{

n− 1, sup
W(0)

F̂ (·, 0)

}

.

We note that F̂ is invariant under simultaneous rescaling of the metric g 7→ λg and time t 7→ λt.
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Proof. We first deal with the case in which Lmin(0) ≥ e2. Since Lmin(t) is nondecreasing we also have

Lmin(t) ≥ 2 in this case.

Our proof will proceed by applying the maximum principle to equation (26) which F satisfies. We will

apply the maximum principle in the region where F ≥ n− 1. Since we are currently assuming L ≥ e2 > 1,

F and K have the same sign, so that F ≥ n− 1 implies K ≥ 0.

We use our assumption of positivity of the scalar curvature to conclude 0 ≤ R = n[−2K + (n− 1)L] and

hence

K ≤ n− 1

2
L.

Using L > e2 > e, we conclude that the coefficient P in (26) satisfies

P ≥ (n− 1) logL− (n− 1)(logL− 1) = n− 1.

Thus when K > 0 and L > e2, (26) implies the differential inequality

Ft ≤ ∆F + 2

(

logL− 1

L logL

)

LsFs + 2QK.

But if F ≥ n− 1, then we have

Q ≤ −K
2

L2
(logL− 1) ≤ 0

and hence

Ft ≤ ∆F + 2

(

logL− 1

L logL

)

LsFs.

We conclude that if Lmin(0) ≥ e2 then supF (·, t) cannot increase whenever it exceeds n− 1.

To complete the proof we must deal with possibility that Lmin(0) < e2. Should this occur, then we rescale

both time and the metric, i.e. we consider g̃(t) = λg(t/λ) which again satisfies the Ricci flow equation.

Denoting its sectional curvatures by K̃ and L̃ we have L̃min = λ−1Lmin, K̃ = λ−1K. Thus if we choose

λ = e−2Lmin(0), then L̃(0) ≥ e2, and the preceding arguments apply to the metric g̃. Hence max{n− 1, F̃}
is nonincreasing. In terms of the original metric we have found that

max

{

n− 1,
K

L
log

(

e2

Lmin(0)
L

)}

does not increase with time, as claimed. �

9.1. Convergence to a cylinder. For t ∈ [0, T ) close to T , we choose x0(t) ∈ W(t) so that ψ(x0(t), t) =

rmin(t). Let

σ = s(x, t) − s(x0(t), t).

We will now prove

Lemma 9.2. There are constants δ > 0 and C <∞ such that for t sufficiently close to T one has

(32) 1 ≤ ψ(x, t)

r
≤ 1 +

C

− log r

(σ

r

)2

for |σ| ≤ 2r
√− log r, and

(33)
ψ(x, t)

r
≤ C

σ

r
√− log r

√

log
σ

r
√− log r

for 2r
√
− log r ≤ σ ≤ r1−δ. Here we have written r = rmin(t), for short.
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Proof. Choose a small number β > 0.

We regard t as fixed, and consider the neighborhood of the neck x0(t) in which ψ ≤ β and |ψs| < β. In

this region one always has L ≥ (1 − β2)/β2, so that |2 − logLmin(0)| ≤ CL for some constant C < ∞. By

Lemma 9.1, we may assume that K
L logL ≤ C for some C <∞. In terms of ψ, this means

ψss
ψ

≤ 1 − ψ2
s

ψ2
· C

log
1−ψ2

s

ψ2

,

and thus

ψψss ≤ C
1 − ψ2

s

log(1 − ψ2
s) − 2 logψ

,

whence
ψψss

1 − ψ2
s

≤ C

−2 logψ
· 1

1 − 1
2

log(1−ψ2
s
)

logψ

.

Since we only considering the region where ψ ≤ β and |ψs| ≤ β, we have

1 − 1

2

log(1 − ψ2
s )

logψ
≥ 1 − 1

2

log(1 − β2)

logβ
.

By choosing β small enough we can make the righthand side ≥ 1
2 , so that we get

ψψss
1 − ψ2

s

≤ C

− logψ
.

We now further restrict our attention to the region to the right of the neck, where ψs > 0, and where we

may choose the radius ψ as a coordinate; i.e. we regard all quantities as functions of ψ. Then we have

−d log(1 − ψ2
s)

d logψ
=

2ψsψss
1 − ψ2

s

· ψ
ψs

≤ C

− logψ
.

Integrate this from the neck, where ψ = rmin(t) = r and ψs = 0, to an arbitrary point. One gets

− log(1 − ψ2
s) ≤

∫ ψ

u=r

C

− logu
d logu = C log

log r

logψ
.

Using the calculus inequalities x ≤ − log(1 − x) and logx ≤ x− 1, we arrive at

(34) ψ2
s ≤ C log

log r

logψ
≤ C

(

log r

logψ
− 1

)

.

We are always assuming that |ψs| ≤ β, so this last inequality will only be useful if the righthand side is no

more than β2. Henceforth we assume that

(35) r ≤ ψ ≤
(

1

r

)β2/2C

r.

Using e−β
2/C ≤ 1− β2/2C for small β, one finds that (35) and (34) imply |ψs| ≤ β and ψ < β, as required.

Integrating once again, we get
√
Cσ ≥

∫ ψ

r

du
√

log r
log u − 1

.

Substitute u = rv. It follows from r ≤ u ≤ ψ that 1 ≤ v ≤ ψ/r, and by (35), that 0 ≤ log v ≤ − β2

2C log r.

Hence we get

(36)
√
C
σ

r
≥
∫ ψ/r

1

√

− log r − log v
dv√
log v

≥ 1

2

√

− log r

∫ ψ/r

1

dv√
log v

.
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Proposition 9.3. The function Z : [0,∞) → [1,∞) defined by

x =

∫ Z(x)

1

du√
logu

is monotone increasing and satisfies

Z(x) =

{

1 + 1
2x

2 + o(x2) (x↘ 0)

(1 + o(1))x
√

logx (x→ ∞)
.

In particular, we have, for some constant C <∞,

Z(x) ≤
{

1 + Cx2 (0 ≤ x ≤ 2)

Cx
√

logx (x ≥ 2).

We leave the proof to the reader. Our last estimate (36) can be recast as ψ/r ≤ Z(Cσ/r
√
− log r), which

combined with the estimate of Z(x) for x ≤ 2 gives (32).

For larger σ we get

ψ

r
≤ C

σ

r
√
− log r

√

log
σ

r
√
− log r

,

which is exactly (33). This estimate will be valid when σ ≥ 2r
√
− log r, while (35) must also be satisfied.

Using C
√
− log r = ro(1) we find that (33) will hold if ψ/r ≤ (1/r)β

2/2C+o(1). �

9.2. The type-I blow-up. Let g(t) be the solution of Ricci flow considered above. We know by Lemma 7.2

that the curvature stays bounded on the polar caps, while Lemma 7.1 applied to the waist W(t) gives us

the upper bound |Rm| ≤ Crmin(t)−2. Since rmin(t) ≥ C
√
T − t, we find that |Rm| ≤ C(T − t)−1; i.e. the

singularity is of “type-I,” namely “fast-forming.”

One can therefore construct a type-I blow-up by considering the metrics g̃(t) = (T − t)−1g(t). Near a

neck, these will converge to an ancient solution of Ricci flow; and in view of Lemma 9.2, this ancient solution

must be the cylinder solution. It follows that

(37) rmin(t) = (1 + o(1))
√

2(n− 1)(T − t).

In view of this, Lemma 9.2 implies

Lemma 9.4. There are constants δ > 0 and C <∞ such that for t sufficiently close to T one has

(38) 1 + o(1) ≤ ψ(x, t)
√

2(n− 1)(T − t)
≤ 1 +

C

− log(T − t)

σ2

T − t

for |σ| ≤ 2
√

−(T − t) log(T − t), and

(39)
ψ(x, t)√
T − t

≤ C
σ

√

−(T − t) log(T − t)

√

log
σ

√

−(T − t) log(T − t)

for 2
√

−(T − t) log(T − t) ≤ σ ≤ (T − t)(1−δ)/2.
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10. Equatorial pinching

In this section, we consider the special case of a reflection-invariant metric on Sn+1 with a single symmetric

neck at x = 0 and two bumps. In this case, we prove that the neckpinch singularity will occur only on the

totally-geodesic hypersurface {0} × Sn, unless the diameter of the sphere Sn+1 becomes infinite as the

singularity time is approached. (We do not expect the latter alternative to occur.) Our method will be to

construct a family of subsolutions v for v = ψs.

As in Section 5.4, let x∗(t) denote the location of the right-hand bump (the unique point in (0, 1) where

ψmax(t) is attained). As in Section 7, let D = limt↗T ψ(x∗(t), t) denote the final height of that bump. By

the construction in Section 8, we may assume that D > 0. Define the function

ρ(t) = n

∫ t

0

∫ D

0

(

ψs
ψ

)2

ds dt,

noting that ρ is monotone increasing in time, so that ρ(T ) = limt↗T ρ(t) exists.

Now let s∗(t) = s(x∗(t), t) denote the distance from the equator to the right-hand bump. By Proposition

5.1, one has |ψs| ≤ 1; and because ∂tψmax ≤ −(n − 1)/ψmax, one has ψ(s∗(t), t) > D for all t ∈ [0, T ).

Together, these results imply that s∗(t) > D for all t ∈ [0, T ). Let xD(t) denote the unique point in (0, x∗(t))

such that s(xD(t), t) = D. Notice that for any s, the hypothesis of reflection symmetry about x = 0 lets one

integrate by parts to obtain the identity

∂s

∂t
= n

∫ x

0

ψss
ψ

∂s

∂x
dx = n

{

ψs
ψ

+

∫ s(x)

0

(

ψs
ψ

)2

ds

}

.

Since Lemma 5.5 implies that ψs ≥ 0 when 0 ≤ s ≤ s∗(t), one may then estimate at any x̂ ∈ [xD(t), x∗(t)]

that

(40) s∗(t) ≥ s(x̂, t) ≥ n

∫ t

0

∫ s(x̂)

0

(

ψs
ψ

)2

ds dt ≥ ρ(t).

In particular, ρ(t) is bounded above by the distance from the equator to the bump.

We are now ready to prove the following “single-point pinching” result:

Lemma 10.1. If the diameter of the solution g(t) remains bounded as t ↗ T , then ψ(s, T ) > 0 for all

0 < s < D/2.

To establish the lemma, let t0 ∈ (0, T ) and δ > 0 be given. For ε > 0 to be chosen below, define

v(s, t) = ε{s− [ρ(t) − ρ(t0 − δ)]}.

By (40), the finite-diameter assumption implies that ρ(T ) <∞, hence that

sup
t0−δ<t<T

[ρ(t) − ρ(t0 − δ)]

becomes arbitrarily small when t0−δ is sufficiently close to T . The lemma is thus an immediate consequence

of

Proposition 10.2. If ρ(T ) <∞, then for any t0 ∈ (0, T ) and δ ∈ (0, t0), there exists ε > 0 such that v = ψs

satisfies

v(s, t) ≥ v(s, t)

for all points 0 < s < D/2 and times t0 ≤ t < T .
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Proof. Since v(0, t0) < 0 and v(s, t0) > 0 for all s ∈ (0, s∗(t0)), one may choose ε1 such that if 0 < ε < ε1,

then v(s, t0) > v(s, t0) whenever 0 ≤ s ≤ D/2. So if the result is false, there will be a first time t̄ ∈ (t0, T )

and a point s̄ ∈ (0, D/2) such that v(s̄, t̄) = v(s̄, t̄). At (s̄, t̄), one then has

(41) vt ≤ vt = ε

(

∂s

∂t
− ρ′

)

as well as v = v, vs = vs = ε, and vss ≥ vss = 0. Hence

vt = vss +
(n− 2)

ψ
vvs +

(n− 1)

ψ2
(1 − v2)v ≥ ε

(n− 2)

ψ
v +

(n− 1)(1 − v2)

ψ2
v.

Whenever 0 < ε < ε2 =
√

2/D, one has v ≤ εs < 1/
√

2 for all 0 ≤ s ≤ D/2 and t ∈ [t0, T ). Then because

v ≥ 0 for s ∈ (0, D/2) ⊂ [0, s∗ (t)], one estimates at (s̄, t̄) that

vt − vt ≤ ε

(

∂s

∂t
− ρ′ − n− 2

ψ
v

)

− (n− 1)(1 − v2)
v

ψ2

≤ ε

(

∂s

∂t
− ρ′

)

− n− 1

2

v

ψ2

= εn

[

v

ψ
−
∫ D

s̄

(

v

ψ

)2

ds

]

− n− 1

2

v

ψ2

<
v

ψ

[

εn− n− 1

2ψ

]

.

Choose ε3 < (n − 1)/[2nψmax(0)]. Then if 0 < ε < min {ε1, ε2, ε3}, the consequence ψt < 0 of Proposition

5.2 implies the inequality vt − vt < 0. This contradicts (41), hence establishes the result. �
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