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Abstract

If g is a metric whose Ricci flow g (¢) converges, one may ask if the same
is true for metrics § that are small perturbations of g. We use maximal
regularity theory and center manifold analysis to study flat and Ricci-flat
metrics. We show that if g is flat, there is a unique exponentially-attractive
center manifold at g consisting entirely of equilibria for the flow. Adding
a continuity argument, we prove stability for any metric whose Ricci flow
converges to a flat metric.We obtain a slightly weaker stability result for
a Kéhler—Einstein metric on a K3 manifold.

1 Introduction

Since the introduction of the Ricci flow

%g = —2Rc, 9(0) = go, (1)
as a useful tool [H2] for the study of relationships between manifolds and the
Riemannian geometries they admit, there has been considerable progress in our
understanding of the behavior of geometries deformed by the Ricci flow. (See
for instance [H5], [H6], and the survey [CC].) However, some basic questions
of nonlinear analysis concerning this behavior are to date unresolved. One of
these is the question of stability of converging Ricci flows. In particular, let
go be a geometry whose Ricci flow g () converges. Is it true that the Ricci
flow g (t) converges for all geometries go that are sufficiently close to go in some
appropriate topology?

The work of Ye answers this question affirmatively [Ye] if go is a metric of
constant nonzero sectional curvature and if one replaces the Ricci flow by the

* Accepted for publication in Communications in Analysis and Geometry.
TPartially supported by NSF grant PHY9800732.



volume—normalized Ricci ﬂOW
—g=—-2Rc+-— 7{Rd (0) = (2)
519 = ¢+ kg, 9 Jo-

(Here and throughout this paper, we denote the average of a scalar function f on
a compact manifold by § fdu = [ fdu/ [ dp.) Among other results, that work
shows that for any sufficiently Riemann-pinched Einstein metric go of nonzero
scalar curvature, there is a C? neighborhood Ny, of go such that the Ricci flow
G (t) of any go € Ny, converges to go.

Left undetermined by Ye’s work is the stability of Ricci flow convergence for
metrics near a flat geometry, or more generally, near an Einstein metric go of
vanishing scalar curvature. A key feature of such geometries is the existence
of zero eigenvalues for the linearization of the flow, regarded as a differential
operator on symmetric (2,0)-tensors. Note that Ye’s result requires a positive
spectrum for the operator

L [h]ij = —Ahij — ZRg”hg + (qu — %R(S;I) hqj.
A zero eigenvalue signals the presence of a nontrivial center manifold in the
space of metrics near gg, with corresponding complications in the analysis of
the flow of nearby metrics.

The maximal regularity theory developed by Da Prato and Grisvard [DG]
and notably applied to quasilinear parabolic reaction-diffusion systems by Si-
monett [S] enables one to establish stability, long-time existence, and conver-
gence of dynamical flows with nontrivial center manifolds present. We use these
methods to prove a convergence stability theorem for the Ricci flow of met-
rics near a flat geometry. To the best of our knowledge, this is the first time
that center-manifold analysis has been applied to the Ricci flow. A secondary
purpose of our investigation, therefore, has been to explore how effective such
techniques may be for studying this geometric evolution problem. It should be
noted that linear stability and instability analysis has been successfully used to
study the curve shortening problem; see [AL] and especially [EW].

As detailed in Theorem 3.7, our main result says that for all metrics go in a
little-Holder ||-||,, , neighborhood Ny, of a flat metric go on a torus 7", the Ricci
flow g (t) converges exponentially fast in the [||,, , norm to a flat metric Joo.
The limit metric jo is generally not go; however, the set of flat metrics forms
a n(n+ 1) /2-dimensional submanifold of the space of all metrics on 7", and
the intersection of this submanifold with the neighborhood N, comprises the
center manifold for the Ricci flow dynamical system near go. Although center
manifolds in dynamical systems are in general not unique, it is a remarkable
consequence of this analysis that the center manifold at a flat metric is unique,
consisting entirely of equilibria.

If one has determined the stability of Ricci flow convergence for metrics near
a specified flat metric go (Theorem 3.7), then it is relatively straightforward to
show that it is stable for metrics near some hy whose Ricci flow h (t) converges



to go (Corollary 3.8). The basis for this argument is finite-time continuity of
the flow, which implies that for any neighborhood Ny, of go, there exists a
neighborhood N, of hg such that if ko € N}, then the Ricci flow k (t) enters
Ny, in finite time. Combining this with stability about go, one verifies the
stability of Ricci flow convergence about hg. Applying this result, one can show
Ricci flow convergence to a flat metric for any initial metric kg sufficiently close
to a product geometry on 72 x S' ([H4] and §11 of [H5]) or sufficiently close to
a polarized Gowdy metric [CIJ].

As noted above, Ye’s studies show stability of Ricci flow convergence for
Riemann-pinched Einstein metrics of nonzero scalar curvature, but his results
leave the case of zero scalar curvature unresolved. In three dimensions, g is
Einstein and has vanishing scalar curvature if and only if g is flat, in which
case Theorem 3.7 establishes stability. In dimension four and above, there are
nonflat Ricci-flat metrics, so we may hope to find further cases for which we
can attempt to show stability of Ricci flow convergence using the techniques
discussed here. In §4, we discuss such a case: we consider Kdhler—Einstein
metrics on K3 complex surfaces. These are geometries on a certain manifold
M?* of four real dimensions; they are Ricci-flat and therefore fixed points of the
Ricci flow, but are not flat. In Theorem 4.16, we show that for any Kahler—
Einstein metric go on a K3, there is a ||-[|,, , neighborhood N, of go in the
space of all metrics on M* such that the DeTurck flow § (t) of any initial metric
go € Ny, exponentially approaches a 58-dimensional center manifold containing
go, for as long as §(t) remains in Ny,. (The DeTurck flow is equivalent by
diffeomorphisms to the Ricci flow; see the next paragraph for an introduction
and §2.1 for a precise statement of this equivalence.) Note that one result of
Cao’s paper [C] is that every initially K&hler metric on a K3 converges under
the Ricci flow to a Ricci-flat Kéhler metric. This makes it natural to conjecture
that the Ricci flow of any initial metric in Ay, converges to a unique limit metric
in the 58-dimensional space of Ricci-flat Kéhler metrics known to exist on a K3
surface. Our results thus far support but do not yet prove this conjecture.

While the heart of the proof of Ricci flow convergence stability for both the
flat and K3 Kahler-Einstein metrics is maximal regularity analysis, a prelimi-
nary step is needed in each case. The Ricci flow PDE system is not itself strictly
parabolic; it is thus not a system to which one can directly apply the methods of
Simonett. However, one can work with an alternative flow whose PDE system is
strictly parabolic, and whose solutions are related to solutions of the Ricci flow
by a l-parameter family of diffcomorphisms. In §2, we review this alternative
flow (sometimes called the ‘DeTurck flow’), establish some notation, discuss the
function spaces we will use, and provide a very brief introduction to some ideas
of maximal regularity.

Our main result for flat metrics is stated and proved in §3. The proof involves
essentially five steps:

1. Compute the linearization of the DeTurck flow and analyze its spectrum
at a given Ricci-flat metric go.



2. Verify certain characteristics and properties of the flow that are necessary
for the application of maximal regularity results.

3. Show the existence of C" center manifolds and describe their tangent space
at the fixed point go.

4. In the flat case, prove there is a unique smooth center manifold present.

5. In the flat case, use the fact that the center manifold consists entirely of
flat metrics first to show that exponential approach to the center manifold
implies convergence of the DeTurck flow to a unique flat metric, and then
to prove that the same is true for the Ricci flow.

We carry out each of these steps in §3. We then state as a corollary the stability
of Ricci flow convergence for metrics whose Ricci flow converges to a flat metric.

In §4, we discuss the application of the analysis developed here to other
metrics. The focus there is on K&hler—Einstein metrics on K3 manifolds. We
sketch the proof of our results for such metrics in that section, following essen-
tially the first three steps outlined above. As we have already noted, we are not
yet able to complete a full stability analysis for the center manifold about a K3
Kahler—Einstein metric. In the remainder of §4, we note a few other geometries
to which our methods may apply.

1.1 Acknowledgement The authors thank Jean Pierre Bourguignon and Alan
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2 Background

The intent of this section is to establish notation, to introduce the function
spaces needed for our study, and to provide a brief introduction to some of the
tools we shall need, including the DeTurck flow and maximal regularity theory.
We start by fixing some notation.

Given a closed connected smooth manifold M, we denote by S (M) the
bundle of symmetric covariant 2-tensors over M and by Si (M) the subset of
positive-definite tensors. In this context, a (smooth) Riemannian metric is an
element of C* (SF (M)). For convenience, we shall write Sy = C* (S (M))
and S5 = C* (SF (M)). If g € S5, we denote its Riemannian curvature tensor
by Rm and write its components as R;;r¢, where Ri221 > 0 on the round sphere.
Then Rc € Sz denotes the Ricci tensor of g with components R;;, and R is its
scalar curvature.

We denote by A? = AP (T* M) the bundle of p-forms on M and by QP =
C (AP) the space of differential p-forms. We indicate the de Rham cohomology
groups of M by H? = HY, (M, R) and denote the harmonic p-forms by HX.



Given a Riemannian metric g on M with volume form du, we define 6 = 4, :
Sy — Q' as the map

§:h 8h=—g"V,h;,dz" (3)
whose formal adjoint under the L? inner product
()= [ ) du )
M

is the map &* = d; : Q' — S, given by
. 1 1 o
0w §£w#g =5 (Viwj + Vjw;) dz* @ da’. (5)

(Here L is the Lie derivative and w# is the vector field metrically isomorphic
to w.) We shall also denote by & = §, the map Q7 — QP~! formally adjoint to
d: QP — QPFL: the meaning will be clear from the context.

2.1 The DeTurck equations

The Ricci flow evolution equation (1) posed on Sy is only weakly parabolic
[H2]. In order to obtain a strictly parabolic system, we follow [D] and define
G:S;_XSQ%SQ by

1 . 4
(0.0 6 (00) = (w5 = 5" usegy ) di' o ©

Then (for positive-definite u) we define P : S x Sf — S, by

(g,u) = Pu(g) = =25 (u™"3, (G (g,u))) , (7)

and consider the evolution equation

5.9~ ~ 2Relgl - Pu(g), 9(0) = go. (8)
Tt is remarkable that the right hand side of (8), regarded as a quasilinear operator
on g, is strongly elliptic for any choice of u € S; in fact we have the following:

2.1 Theorem (DeTurck) The right hand side of (8) has the same symbol
as the Laplacian; consequently the evolution equation (8) is parabolic for any
choice of u € Sf. The unique solution g of (8) provides a unique solution
¢5g of the Ricci flow evolution equation (1) with initial value go, where the
diffeomorphisms ¢; are generated by integrating the vector field

L 1
Vi = gwujklgkﬁgpq (Vpqu — QVZqu) . (9)
Note that we shall usually take u to be the particular flat (or Ricci-flat) metric

about which we wish to determine stability. (For Ricci solitons, a different
approach is needed.)



2.2 The space of Riemannian structures

As is well known, Sy with the C* topology is a Frechét space, and S C S»
is an open convex cone. There is a natural right action of the group D (M)
of smooth diffeomorphisms of M on S given by (h,#) = ¢*h. It is easy to
check that a metric g is Einstein if and only if ¢* ¢ is Einstein. So for purposes of
studying distinguished metrics on M, one may regard Sy as a union of orbits O,.
The slice theorem of Ebin [E] shows that S is ‘almost’ an infinite-dimensional
manifold possessing an exponential map. (More precisely, the theorem states
that for any metric g, there is a map x : Y — D (M) of a neighborhood i of g in
O, such that (x (¢*g))" g = ¢*g for all ¢*g € U, and there is a submanifold I of
S containing g such that the map U xI' — S given by (¢*g,7) — (x (6*9))" 7
is a diffeomorphism onto a neighborhood of g in S;.) We shall require only the
infinitesimal version of the slice theorem, which gives a useful decomposition
of T,Sf. For each g € Sy, let §, and 45 be the maps defined in (3) and (5),
respectively. It is clear that (h,d;W) = (d,h, W), hence that kerd, L imd;.
With more analysis (see [E] or [BE]) it can be shown that these spaces span: in
fact, one has

T,SF =H, @V, (10)

where
Hy = kerd, and V, = imd,. (11)

Our notation is meant to suggest ‘horizontal’ and ‘vertical’ subspaces, because
Ty0y = imd, = V,. In the remainder of this paper, we shall freely use the
following observations, whose proofs are straightforward calculations.

2.2 Lemma Given g € Sf and h € S, define H = tryh = g“h;;. Let
g = g + ¢h, and denote the Christoffel symbols, curvature, and volume form
of § by T, R, and djfi, respectively. Then:

1. 21% = 2 (Vih + Vihj = Vhy) .
2. 2R ‘ _ 1 ViVsh§ = ViVthi = V;Vihi
© 9e “Vigk =0 2 +Vjvlhik +Rfjmh2“ _ R;?khfn .
3. 2R | = _1( Ahuw+ Vi VeH =V, divhe = Vidivh; )
R —Rjehf, — Ryeht + 2Ry hP?
4. LR _ =—(AH-div?h+ Re,h).

5. Zdji.—o = +H dp.

6. 2 $Rdji

.= $ (3 (R— ¢ Rdu) H — (Re, h)) dp.

e=

o = kakhij + hiijXk + hjkViXk for any vector field X .
e=l




2.3 Maximal regularity and dynamic analysis

It is often useful to regard an evolution PDE as an ODE posed in an infinite-
dimensional space. This viewpoint suggests the utility of a qualitative geometric
or dynamic theory for parabolic evolution equations — a framework in which
one can decompose the state space of an equation into invariant subspaces and
then discuss their stability or lack thereof. Such an approach was developed
for semilinear equations in [H]. More recently, the concept has been extended
to nonlinear parabolic equations by Da Prato-Lunardi [DL], and refined for
quasilinear systems by Simonett [S]. A key ingredient of that theory is some
sort of implicit function theorem or fixed-point theorem. For this to work, one
needs function spaces in which each linear Cauchy problem of the sort

0
E¢ZL¢+¢(”7 ¢ (0) = ¢o

has a unique solution ¢ such that 9¢/0t and L¢ have the same regularity as
1. One approach for achieving this is to use the mazimal regularity theory of
Da Prato and Grisvard [DG], which in turn is based on the use of interpolation
spaces. There are several methods of defining such spaces in the literature; each
yields a suitably functorial map taking any Banach couple )y < ), to a Banach
space Y such that }; C Y C )y. (For further background, see [CH].)

In §3.3, we lay the groundwork that allows us to apply this hierarchy of
theories to the Ricci flow. Our objective there is to apply the following theorem
of Simonett. We state it here in a form suited to our purposes; this is an
adaptation of more general results derived from Theorem 4.1, Remark 4.2, and
Theorem 5.8 of [S]. Roughly speaking, the theorem tells us that if A is a suitable
quasilinear differential operator acting on appropriate function spaces, and if its
linearization DA at a fixed point has an eigenvalue on the imaginary axis, then
the evolution of solutions starting near that fixed point can be characterized by
the presence of exponentially attractive center (unstable) manifolds.

Here and in the remainder of this paper, we denote by B (X, z,d) the open
ball of radius d centered at x in the metric space X'.

2.3 Theorem (Simonett) Let X; < Xy be a continuous dense inclusion of
Banach spaces, and let X, and X denote the continuous interpolation spaces
corresponding to fixed 0 < f < a < 1. Let

%g =A(9)g (12)

be an autonomous quasilinear parabolic equation posed for t > 0, such that
A(-) € C*(Ggs, L (X1, Xp)) for some positive integer k and some open subset
Gs C X. Assume that there exists a pair £y 2 & of Banach spaces, that there
exist extensions A (-) of A (-) to domains D(A (-)) that are dense in &, and that
the following conditions hold for each g € Gy = Gg N Xy:

o A(g) € L(&,&) generates a strongly continuous analytic semigroup on
L(&);



o Xo = (£0,D(A(9)))s and X1 =2 (€0, D(A(9)))(11e) for some 6 € (0,1),
where (-,-), denotes the continuous interpolation method of [DG];

o A(g) agrees with the restriction of A (g) to the dense subset D (A) C Xo;

o & — Xg = & is a continuous and dense inclusion with the property that
there are C > 0 and ¢ € (0,1) such that for all n € &, one has

1-6 [
12, < Clinllg, " [nlle, -
s

Let ¢ € G, be a fixed point of (12). Suppose that the spectrum ¥ of
the linearized operator DA|; admits the decomposition & = ¥, U X, where
Ys C {z:Rez <0}, and where 3., C {z:Rez > 0} consists of finitely many
eigenvalues of finite multiplicity. Suppose further that ., NiR # (). Then:

1. If S(A) denotes the algebraic eigenspace of A\ € X, then X, admits
the decomposition X, = X: @& X for all a € [0,1], where X" =

Diex.. SO

2. For each r € N, there exists d, > 0 such that for all d € (0,d,], there
is a bounded C™ map ¢ = ¢} : B(X{*, g,d) = X7 with ¢ (§) = 0 and
D+ (§) = 0. The image of ) lies in the closed ball B (X{,§,d), and its
graph is a C™ manifold

foe = {19 (7)) :v € B(¥(*,§,d)} C X1
satistfying Ty MY =2 X%, We call M* alocal center manifold if ¥, C iR

loc o

and a local center unstable manifold otherwise. MY, is locally invariant

for solutions of (12) as long as they remain in B (X{*, §,d) x B (X{,0,d).

3. For all a« € (0,1), there are constants C, > 0 independent of § and
constants w > 0 and d € (0, dg] such that for each d € (0,d], one has

lIm*g () = (7 (1)llx, < th_aa e Img (0) =4 (g (0))l]

for all solutions g (t) with g (0) € B(X,,§,d) and all times t > 0 such
that the solution g (t) remains in B (X,, §,d). Here n® and 7°* denote the
projections onto X7 = (X7, X§), and XS respectively.

2.4 Remark The C7 local center (unstable) manifolds constructed in state-
ment (2) of the theorem are not in general unique. For instance, it can happen
that d, — 0 as r = oco.

2.5 Remark Statement (3) of the theorem implies in particular that solutions
whose initial data lie sufficiently near a fixed point in the X, topology are
attracted at an exponential rate in the X; topology to solutions whose initial
data belong to one of the finite-dimensional local center (unstable) manifolds.
Note however that the theorem does not in general tell us anything about the
dynamics within a local center (unstable) manifold.



3 Stability of Ricci flow convergence to a flat
metric

In this section, we state and prove our main results, which concern the behavior
of the Ricci flow near a flat metric, or near a solution of the Ricci flow that
converges to a flat metric.

The key step in obtaining these results involves the application of Theorem
2.3 to the DeTurck flow evolution equation (8). So we shall need to identify
appropriate function spaces and study the properties of the DeTurck flow oper-
ator and its linearization in order to verify the hypotheses of Theorem 2.3 in our
particular case. We do this preliminary analysis in subsections 3.1 — 3.3. Then
after a discussion in subsection 3.4 of the relationship between convergence of
the DeTurck flow and of the Ricci flow, we state and prove our main result
(Theorem 3.7) in subsection 3.5. Theorem 3.7 pertains to Ricci flows starting
near a flat metric; in subsection 3.6, we use the continuity of finite-time evolu-
tion together with Theorem 3.7 to verify the stability of Ricci flow convergence
near any metric go whose Ricci flow converges to a flat metric (Corollary 3.8).

3.1 The DeTurck operator

We begin by examining the form of the DeTurck operator — the right hand side
of equation (8) — in local coordinates and by noting some of its properties.

We first observe that the DeTurck operator is quasilinear in g. In order to
match the notation used in Theorem 2.3, let us write this operator as A, (g) g,
so that equation (8) takes the form

0
59 = Au(9) 9, 9(0) = go.

3.1 Lemma If we express A, (g) g in terms of first and second derivatives of g
in local coordinates, we obtain

klpq

(Au(9) 9)ij = a(z,u,9)i5" 55— gk
0
+b (,u,0u,9);;" app Ikt T (2, u,0u);; gis- (13)

The functions a (z,-,-), b(z,-,-,-), and ¢(x, -, -) depend smoothly on x € M and
are analytic functions of their remaining arguments.

Proof. In a smooth chart {z*}, it follows from the standard formulas

;1 0 0 0
I‘i—”j = 59“ ((%igje + 57 3 ~ ngj)

: O pe 9o it =TT

szk - a.%‘i Jk oI im* jk




by straightforward computation that

2 2 2 2
Y S S,
K 0xi0xi " T axkdxt” T driork Pt T drioxt Y
+7 (9,97, 99),

where m (g, gL, 89) is a generic polynomial in g, g1, and first derivatives of g.

Similarly, one observes that

(Py (g))ij = (ng)ij + (ng)ji )

where
. _ 1
(ng)ij = V’i |:('U/ 1)jk gkegpq (vpuqﬁ - 5V@qu>:| . (14)
Since
Vp’u,qg V[u,p = (a p F umg I‘;’}uqm>
1/ 0
) (8 U I—‘%umq - FZ“pM) )
one has

0
(ng)w = - (uil)jk ufmgk:zgpq (8 ZFPQ> + ™ (g g ag7u7u7176u) .

Since for any matrix M, the components of M ~! are analytic functions of the
components of M, the result follows. m

3.2 The linearization of the DeTurck operator

We next study the infinitesimal structure of the DeTurck operator. Given a
Riemannian metric g on M, we denote by A = ¢g“V,;V; the rough Laplacian.
The Lichnerowicz Laplacian is then the map Ay : S; — S given by

Aghij = Ahij + 2Riquhpq — thk]’ - R?hik. (15)

While the spectrum of the Lichnerowicz Laplacian is negative semidefinite for a
flat metric and for many other geometries, it is not negative semidefinite for all
Riemannian metrics [Av]. This is relevant for the linearization of the DeTurck
flow (8), because we have the following;:

3.2 Proposition The linearization of the DeTurck operator A, (g) g about gg
is given by
(DA (9) g h = Ach — Tyh, (16)

10



where
(Wuh)y; = (VFhi; — Vih = Vh5) ug) (vm ‘ ——V"U)
+ (Vibfuz + Vihkuz!) <§VZU - vmufn)
¢, -1 £, -1 1 k, m m, k
+ (Vihmujk +thmuik) <§V uy' —V ug>

+ hf

V'(“j_/gl(lsz vy Z)) ]
+V; (ugz' (3VEU = Vmul))
Vi (u;kl (3VFEup — Vmue)) ] ‘

(17)
+V; (uj" (3VFup — Vb))

¢
+ h;,

Here, all covariant differentiation is done with respect to the Levi-Civita con-
nection of go, indices are raised and lowered using go, and U = trg, u

Proof. By definition, we have

0
- _Pu (90 +€h)

7]
(DAL (@)l h = =2 - Relgo+eh]| = o

e=0 e=0

We calculate 2 Rec[go + ch] using formula (3) of Lemma 2.2. To calculate
%Pu (go + €h), we use the identity

(P’Mg)ij = (ng)ij + (ng)ji s

with Qg defined by (14), and then use Lemma 2.2 to compute

9 3 1 '
% (Qu (g))i]‘ = §V1VjH bl Vi div hj

e=0

1 1

+3 (VFhij — Vibl — V;RE) uy)! (vm ¢ - §V‘3U>

1
+ Vihjuz! (—va - vmufn)
+ Vihg,uj, < VEup — v%’g)
1 m, £

é 1 k k

+ h;, ,[u (ZVu W)]

11



3.3 The DeTurck flow in the context of maximal regularity

We now exhibit appropriate Banach spaces Xy, X1, &), and & such that the
DeTurck operator and its linearization satisfy the hypotheses of Theorem 2.3.

The spaces we use are certain little Hélder spaces. Recall that if r € N and
p € (0,1), the ordinary Holder space C™” is the Banach space of all C" functions
[+ R* = R for which the Holder norm |[f||,., , is finite. The subspace of C*°
functions in C™” is not dense; indeed, C™ is isomorphic [Ci] to {«, hence is
not separable. One defines the little Holder space h™t* to be the closure of the
subspace of C'° functions with respect to the [|-[|,, , norm; one then verifies
that h™t* is a Banach space and that h"t? < h*t7 is a continuous and dense
inclusion for s < r and 0 < ¢ < p < 1. (Corresponding statements hold for
C™? (Q) when Q@ C R™ is a bounded C* domain.)

These definitions extend readily [BJ] using a smooth atlas to functions de-
fined on a smooth closed manifold M and taking values in the bundle S5 (M) of
symmetric (2, 0)-tensors over M. Accordingly, we shall use the notation |-, ,
to denote the Holder norm on C” (M, S; (M)), and h™* to denote the little
Holder spaces formed in this fashion. Note in particular that

hrte <y psto (18)

remains a continuous and dense inclusion.

An ezxact interpolation method Iy of exponent 6 takes any pair B; C By of
Banach spaces to a Banach space Iy (By, B1) such that By C Iy (By, B1) C Bo,
and such that if 7" € £ (Bo, Ao)ﬂ[, (B]_, Al) thenT € L (Ig (B(), Bl) s I() (Ao, Al))
and

||T||L:(1,,(BO,BI),16(Ao,Al)) < “T”}:(go,Ao) ”THZ(Bl,Al) :

To apply Theorem 2.3, we will use the continuous interpolation spaces (Bo, By),
introduced in [DG]. By [DF], these are equivalent in norm to the real interpo-
lation spaces frequently found in the literature; hence we will freely use results
originally proved for the latter spaces. The continuous interpolation method is
exact and may be defined in a number of equivalent ways. (See [Tr] or [CH].)
For instance, one can characterize (Bo, By), as the set of all z € By such that
there exist sequences {yn} C By and {z,} C By with =y, + 2p, where

”yn”Bo =0 (2*”9) and HZ"HBI =0 (zn(lfﬂ))

as n — 00. The norm on (By, By), is equivalent to

it {sup (2l 2707l ) |
n>1

where the infimum is taken over all such sequences (yy, 2p)-
For our purposes, the key fact [Tr] about the continuous interpolation spaces
isthat for s <r e N, 0< o <p<1,and 0 < 8 < 1, there is a Banach space

isomorphism
(h*te, hr+p)6 o p(Or+(1=0)s)+(0p+(1-0)0) (19)

12



provided that the exponent 6 (r + p) + (1 — ) (s + o) is not an integer. If it is
not an integer, then there is C' < oo such that for all n € A"+,

1-6 [
1l (hoto ey, < Clllpato lnllprss - (20)

Thus for fixed 0 < 0 < p < 1, we define the following nested spaces:

50 : h0+a

(@]

Xo = hO+p

U (21)
51 : h2+a

U

Xy = he.

Notice that for 8 = (p — o) /2 € (0,1), it follows from (19) that
Xp = (50,51)9 and X = (50,51)(1+9) . (22)
We now wish to focus on the DeTurck operator A, (¢g) defined by (8) and

written in expanded form in (13). Let us fix a smooth metric v and write
A(g) = A, (9). For fixed 0 <e < 1land 1/2 < 8 < a < 1, we define

Go = s (u,2) = {9 € (%o, 1) 19> 2u},  Ga=Ga (1,2) = G N (Ao, 1),

where g > eu means g (X, X) > ¢ for any vector X such that | X |i = 1. Observe
that for each g € Gg, equation (13) allows us to regard A (g) as a linear operator

— kelpq
(A (g) 'Y)ij = a(x7uag)1jj 8xpaxq’)’k£

0 0
+ b ($7 Uu, 6u, g)ffp @’Yké +c (ZIJ, Uu, au)fj Vke
on h?t? = & . For g € Gg, let us denote by Ag, (g) : & C & — & the
unbounded linear operator on & with dense domain D (Ag, (9)) = 1. And let
us denote by Ay, (9) : X1 C Ay — Ay the unbounded linear operator on Xj
with dense domain D (Ax, (g)) = 1. We need to establish the following:

3.3 Lemma The functions g — Ax, (g) and g — Ag, (g) define analytic maps
Ga — L (X1, Xp) and Gg — L (&1, &) respectively.

Proof. Analyticity of these maps is an immediate corollary of Lemma 3.1, once
we have verified that these two functions map into the correct spaces. So it
suffices to show that v — Ax, (g) v is a bounded linear map from X; to X, for
all g € G, and that v — Ag, (g9) v is a bounded linear map from &; to & for
all g € Gg.
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Let v € Xy and consider the first term: a (z,u, g)ff" K Mf;’zmq Ve (z). Writing

(Fog)(z) =a(x,u,g) and suppressing indices for clarity, we wish to estimate
the Holder norm of

(Fog)(z)-(8%) (2) = (Fog)(y)- (8*) (v) (23)
= (Fog)(z) [(9%) (2) = (™) ()]

+(8%7) (y) - [(Fog) () — (Fog) (y)].

Observe that we can estimate |(F o g) () — (F o g) (y)| by integrating the di-
rectional derivative along a minimizing u-geodesic p from z to y of length
dist ,, (z,y):

(Fog) (@)= (Fog) W] = | [ D(Fog) () ds

<sup|D (Fog)|-disty (z,y).

Then recalling from the proof of Lemma 3.1 that F' o g is a polynomial in w,
u~!, g, and g~! of total degree N, and noticing that g~! can be controlled by
u~! when g € G, = G, (u, ), we find that there is a constant C' depending only
on u, &, N, n, and M such that

sup|D (Fog)] < C (1+ lgl5ct) gl -
Combining these estimates and noting that
dist , (z,y) < (dist ,, (z,9))” (1 + (diamuM)l_p> ,
we obtain a constant Cy such that
N-1 . P
|(F 0.9) () — (Fo.6) )| < Co (1+ llgl5et ) lollss (ist o (,9))°

The remaining term in (23) is easily estimated when one recalls that X, =
(Xo, X1), = h?**TP — AP — ROTP. Thus we find there is Cy such that

2
ktpg O
a (xa uv g)iqu axpaxq ’Yké

<01 (14 1glF, ) llas -
hO+p

Similarly, one obtains C> and C3 such that

H b (.Z', U, auv g)ffp %%e

< G (1+ 191, ) Il

hO+p

<Cs ||’7||h0+p .

ke
c(z,u,0u),
H ( s Uy )zk Vke po+0

Thus we have shown that v — Ay, (g9) v is a bounded linear map from X; to Ap,
and hence that G, — £ (X1, Xp). Replacing a by 8 and p by o in the argument
above proves the assertion for Gg — £ (£1,&). =
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Although for every g € Gga, Ag, (9) is bounded when regarded as an operator
&1 — &, it is unbounded when regarded as an operator & — &, and is in
fact only defined on a dense subspace D (Ag, (9)) = & . Nonetheless, it has
the desirable property of generating a strongly continuous analytic semigroup,
which is bounded (and hence defined everywhere) as a map & — &:

3.4 Lemma For every g € Gg, Ag, (9) is the infinitesimal generator of a
strongly continuous analytic semigroup on L (&).

Proof. By DeTurck’s result (Theorem 2.1), Ag, (g) is strongly elliptic for any
g € Gg. By classical elliptic theory, its spectrum is discrete, having a limit point
only at —oco. (See for instance Theorem 37 in Appendix I of [B].) Hence there is
Ao > 0 such that A\I — Ag, (g) is a topological linear isomorphism from &; onto
Eo whenever Re A > ). In this case, the standard Schauder estimate (Theorem
27 in Appendix H of [B]) applied to the operator AI — Ag, (g) yields C < oo
such that

Inlle, = [Inllp24s < CUAL = Agy (9) Nllpors = CHIAM — Agy (9)) nllg,

for every n € &1 = D(Ag, (g9)). By Theorem 1.2.2 and Remark 1.2.1(a) of [A],
this suffices to prove the result. m

3.4 Equivalence of DeTurck and Ricci flow convergence

Our objective here is to show that a solution of the DeTurck flow (8) converges
exponentially fast to a unique flat metric only if the corresponding solution of
the Ricci flow (1) converges exponentially fast to a unique (though possibly
distinct) flat metric.

3.5 Lemma Let V (t) be a vector field on a Riemannian manifold (M™, g (t)),
where 0 < t < 00, and suppose there are constants 0 < ¢ < C' < oo such that

sup |V (z,t)],) < Ce .
zeM

Then the diffeomorphisms ¢, generated by V converge exponentially to a fixed
diffeomorphism ¢, of M.

Proof. Given z € M, let v : [0,00) = M be an integral curve for V starting
at x. Then v satisfies

Y () =V (y(t),t)
7(0) = =,

where we make the standard identification 4" = v, (d/dt). The length L [y] of
the integral curve is nondecreasing and bounded above, because

¢

c .

t t
LI (1) = / IV (2,7)],r) dr < c/ e~rdr =" (1- ) <
0 0

15



This proves that L [y] converges; to see that the convergence is exponential, it
suffices to note that

oo oo C
/ IV (@,7)yr) dr < c/ erdr = St
t t ¢
Since v (t) = ¢; (¢) and since x € M is arbitrary, the result follows. m

3.6 Proposition Let gy be a flat metric on a manifold M. Suppose there is a
neighborhood O of go in S with respect to the ||-||,, , Holder norm such that
for every o € O, the unique solution g (t) of the DeTurck flow

0 _ — _ _ .

519 = ~2Re— Py (9), 9(0) =30

converges exponentially fast to a flat metric §o,. Then the unique solution
g (t) = (¢7g) of the Ricci flow (1) with §(0) = go € O guaranteed by Theorem
2.1 converges exponentially fast to a flat metric §oo.

Proof. It is clear that jo, will be flat if it exists, so all we need do is to show
that §(t) converges. But because go, and go are both flat, their Levi-Civita
connections are each trivial, whence it follows that

Vige] (90) = V(g1 (90) = 0.

Then since g (t) = oo exponentially fast, it follows that V' (t) — 0 exponentially,
where V (t) is given by

T A 1-
Vi = g (90 1)jk gttgre <vp (go)qe - EVg (go)pq) .

(Here V denotes covariant differentiation with respect to the Levi-Civita connec-
tion of g (t).) Hence by Lemma 3.5, the solution g (¢) of the ODE corresponding
to V (t) exhibits exponential convergence to some limit joo. ®

3.5 Main theorem

Having established the preliminary results of subsections 3.1-3.4 concerning the
DeTurck operator, its linearization, and the relation between convergence of the
DeTurck and Ricci flows, we are ready to state and prove our main theorem,
which says that the Ricci flow of any metric sufficiently close to a flat metric
will necessarily converge exponentially quickly to a flat metric.

3.7 Theorem Let gy be a flat Riemannian metric on a torus T". For fixed
p € (0,1), let X denote the closure of S, D Si with respect to the ll-ll24-p
Hoélder norm. Then:
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1. TyySy = X admits the decomposition
TSt = 0 A7,

where X¢ is the n (n + 1) /2-dimensional space of (2,0)-tensors parallel
with respect to the Levi-Civita connection of go.

2. There exists dy > 0 such that for all d € (0,dp], there is a bounded C*
map ¢ : B(X¢, go,d) — X*° with ¢ (go) = 0 and D1 (go) = 0. The image
of 1) lies in the closed ball B (X*, go,d), and its graph

Mipe = {1, (7)) : v € B(X®, 90,d) }

satisfies Tg, M7, = X°. This unique C* local center manifold M, is of

loc
dimension n (n + 1) /2 and consists entirely of flat metrics.

3. There are constants C > 0, w > 0 and d. € (0,dp] such that for each
d € (0,d.], one has

723 (£) = ¥ (7°G ())llay, < Ce™ [[7°G (0) = ¢ (77 (0))ll4.,

for all solutions §(t) of the Ricci flow with §(0) € B(X,qgo,d) and all
times t > 0. Here n° and w° denote the projections onto X° and X'°
respectively. In particular, any solution § (t) of the Ricci flow with initial
data sufficiently near go converges exponentially to a flat metric near gg.

Proof. For reasons discussed earlier, we work first with the DeTurck flow rather
than the Ricci flow. We take the background metric u to be the given flat metric
go, and thus consider the DeTurck flow

o__
at? =

Note that any flat metric is a stationary solution of this flow, because Py, (g) = 0
if g is flat. Note also that ¥, h in equation (16) vanishes for this choice of u,
whence by Proposition 3.2, the linearization of (24) reduces to the basic heat
equation:

—2Rc — Py, (9), g (0) = o. (24)

2
ot
It is clear that the rough Laplacian is negative semidefinite on Ss with
kernel consisting exactly of parallel (2, 0)-tensors, hence of dimension at most
n(n+ 1) /2. Recalling the choices made for Xy, X1, &, and &1, and applying
Lemmas 3.3 and 3.4, we thus verify that the DeTurck operator satisfies the
hypotheses of Theorem 2.3. This proves that local C" center manifolds "M
exist, and that the DeTurck flow of any metric starting near go exponentially
approaches " M¢

loc®

We now claim that the "M are independent of 7, and consist entirely of

flat metrics. To prove this, we observe that any flat metric § sufficiently near g
belongs to "M¢__ for all r € N: if not, then statement (3) of Theorem 2.3 would

loc

ij = Ah”
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imply that § converges exponentially to "MjF, ., contradicting the fact that g is
a fixed point of (24). But it is a standard fact that the space of flat metrics
on the torus is a convex n (n + 1) /2-dimensional set. (See for instance §12.18
of [B].) Since each "M¢ . is at most n (n + 1) /2-dimensional, it follows that
"M . consists exactly of flat metrics for all r € N.

Our argument thus far shows there is a neighborhood B (X, go,d) such that
the DeTurck flow g () of any metric g (0) € B (X, go, ) becomes flat exponen-
tially fast in the ||[|,,, norm for as long as g (t) € B(X,go,0). By (14), we
have

(Pyy (@), = Vi [(gol) w9 (% (90)4¢ — %W (go)pq)]
3Velan),, ) |

where V denotes covariant differentiation with respect to the Levi-Civita connec-
tion of g (t). Since |Rij s Vi (90) e — 9 (go)kg|a and |V;V; (90)1@ - aiaj (90)M|
all decay exponentially fast when g (t) € B (X, go,0), there are C = C (§) < o0
and @ = @ (4) > 0 such that

+ v] |:(g0_1)zk gkégpq (vp (go)qe -

Qg‘ = |-2Rc— P, (3)| < Ce™™
ot

for as long as g (t) remains in B (X, go,d). Choose 0 < & <  small enough that
C (e) /@ (6) < 6 —e. Then for all solutions g (t) with g (0) € B (X, go,€), we can
estimate

15 () — g0l <|g(#) —g(0)|+1]g(0) —go| <S—c+e=4

independently of ¢ > 0. It follows that g (¢) remains in B (X, go, ) for all time
and hence converges to a unique flat metric. By Proposition 3.6, the Ricci flow
of any metric starting sufficiently near go also converges to a unique flat metric.
]

3.6 Stability of solutions that become flat

There are various families F of metrics for which it is known that if g (¢) is the
solution of the Ricci flow starting at some go € F, then the flow g (t) necessarily
converges to a flat metric. This is true, for example, for the polarized Gowdy
metrics [CLJ], for direct-product metrics (72, u) x (S, dz?) with p an arbitrary
Riemannian metric on 72 [H4], and for square torus bundles over S' (§11 of
[H5]). Note that all of these families are characterized by isometries rather than
curvature restrictions.

A straightforward corollary to Theorem 3.7 shows that if the Ricci flow h ()
of a metric starts sufficiently near one of these families, it too must converge
to a flat metric. We emphasize that h (0) need not share the isometries of the
family F.

18



3.8 Corollary Let g(t) be a solution of the Ricci flow that converges to a flat
metric goo. Then there is a |||, , neighborhood O of g (0) in Si such that
every solution h (t) of the Ricci flow with h(0) € O converges to a flat metric
hoo near goo.

Proof. We fix ¢ (t) and its limit geo. It follows from Theorem 3.7 that there
exists a neighborhood A of g, such that the Ricci flow of any metric starting
in M converges to a flat metric near g,. Since g (t) converges to goo, there
exists a time 7' = T (g (0),N) such that g (t) € N for t > T. Choose ¢ > 0
small enough that B(X,g(2T),e) C N. Since Ricci flow for finite time is a
continuous map, there exists § > 0 such that for all h (0) € B (X, g(0),9), we
have h (2T) € B(X,g(2T),¢). It follows that h(t) converges to a flat metric
near go.. M

4 Other results

The intent of this section is to stimulate further research by demonstrating that
our methods are applicable to other questions of stability regarding the Ricci
flow. It should be noted, however, that the results stated below are weaker than
our main theorem, either because they are incomplete or because they in some
sense rediscover known results.

4.1 Stability at metrics which are Ricci flat but not flat

In this section, we consider the DeTurck flow

Og=-Me-Pp @), 30 =g, (25)
where (M™, go) is a given Ricci-flat (but not flat) geometry about which we
wish to determine stability. (Such geometries exist only for n > 4.) Note that
g (t) = go is a stationary solution of both the Ricci flow (1) and of (25). On
the other hand, if gy is another Ricci-flat metric on M™, then §(t) = go is a
stationary solution of the Ricci flow (1) but not necessarily of (25). Nonetheless,
in this case (25) reduces to

0. .
ag:_Pgo(g)v

which is just the Lie derivative of §. So §(t) moves only by diffeomorphisms,
and in particular remains Ricci-flat.

If we linearize (25) at the distinguished Ricci-flat metric gg, the ¥, h term
in equation (16) vanishes, so that we obtain

0
ot
Thus in order to understand the stability of the DeTurck flow near g, it is
necessary to analyze the spectrum of the Lichnerowicz Laplacian on a Ricci-flat

hz'j = Aehij = Ahij + 2Riquhpq.
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manifold. Since Ay is elliptic and self adjoint, we know that its spectrum is real,
discrete, of finite multiplicity, and has no positive accumulation point. It follows
immediately that Theorem 2.3 can be applied at the Ricci-flat metric gg, with
the function spaces Xy, X1, &, and & chosen as in §3.7. Thus there is for each
r € N a C” center (unstable) manifold at gg, and the flow of nearby metrics
will approach it. But to obtain useful information about the dynamics of the
Ricci flow near gg, we need to know much more about those center manifolds.
To do this, we decompose the tangent space Ty, S; at a Ricci-flat metric go
into a number of subspaces and relate these to the spectrum of Ay, in order
to describe the tangent space to the center manifolds at go. We carry out this
analysis in Lemmas 4.1-4.7, and summarize our results in Proposition 4.8. This
is a first step toward understanding the dynamics. For the special case that g is
a Kahler-Einstein metric on a K3 surface, we obtain a stronger result (Theorem
4.16) that falls just short of determining stability, as has been done above for
flat metrics.

To simplify notation, let us assume for now that g is a fixed Ricci-flat metric.
To start our analysis of the spectrum of its Lichnerowicz Laplacian, we recall
that the Hodge—de Rham Laplacian is the map Ay : QP — QP given by

Ag=—(dd +6d). (26)

Note that our sign convention is opposite to the standard one, but is more
convenient for studying heat flows. It is well known [L] that for any Ricci-
parallel manifold (namely, any manifold for which V Re = 0), one has

A* = 6% Ay (27)

and
0Ny = Ago. (28)

If moreover Rc = 0, we note that Ay on Q! reduces to
Agw; = — ((dd + dd) w), = Aw; — Rlw; = Aw;. (29)

We follow [Bu] in defining certain subspaces of Sy = Tgé’;r ; for ease of
notation, we suppress the subscript indicating dependence on g. We set

C={6"(6n):ne}CV (30)
E={VVf:feC®M)}CV (31)
Z={Vw:weHp} CV, (32)

where H} denotes the space of harmonic 1-forms (defined in §2) and

N={he&:0h=0,trh=0}CH (33)
S={(Af+a)g—-VVf:feC®(M,R),acR} CH (34)
G={ag:aeR} CS. (35)
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Recalling that V and H are defined in (11), it is easy to check the indicated
inclusions.

We now make a number of claims regarding these subspaces. Many of these
claims are similar to those in [Bu]. However, negative scalar curvature is as-
sumed in that paper, whereas we have Rc¢ = 0. Thus (since the proofs are short)
we verify the results directly.

4.1 Lemma Each of the spaces defined in (30)-(35) is an invariant subspace
for Ay, in the sense that Ayh belongs to the space whenever h does.

Proof. Invariance of V is a trivial consequence of (27). Invariance of C follows
from (27) and the fact that Ayd = 6A4 as maps A2 — Al on any manifold.
Invariance of E and Z follows from (27) and the fact that Vw = §*w for any
closed 1-form w on any manifold.

Invariance of H follows from (28). Invariance of N also follows from (28)
and the identity tr (Agh) = A (tr h). The invariance of G is clear, and that of
S when Rc = 0 follows from the computation

Ao[(Af +a) gij — ViVfl = (AAf) gij — ViV;Af. (36)
n

4.2 Lemma The spaces C, E, Z, N, and S are pairwise orthogonal with re-
spect to the L* inner product (-,-) = [, (-,-) dp.

Proof. For any closed 1-form 6, we have §6*0 = —Af = —A460 by (29). So let
c=0"n e C,e=VVf=46"df € E, and z = Vw = 6*w € Z be arbitrary.
Then C 1 Z, because
(C, z) = (5*57%5*‘*1) = - (6777Adw) =0.
Similarly, £ L Z, because
(e,2) = — (df, Aqw) = 0.
And C L E, because

To finish the proof, it suffices to show that N L S, because C,E,Z C V and
N,SCH.Ifhe Nand s=(Af+a)g—VVf€eS, then

(hs) = / (A +a)g— VS, by dp=— / (VY f,hy dp = — (df,6h) = 0.
| |

4.3 Lemma H=N&S.
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Proof. We already know that N @ S C H. Given h € H, define H = trh and
H = [Hdu. Then if V = Vol (M, g) and o = H/nV, we have

/(H—na) dp =0.
So there is a unique solution f € C* of the Poisson problem
H —na«a
Af=—— =0.
g2 [n=o

Set s =(Af+a)g—VVSf. Then s € S and
trs=g"[(Af+a)gy —ViVifl=(m—-1)Af+na=H=trh

Hence (h — s) € N, which completes the proof. m
We are now ready to analyze the spectrum of A, on the spaces (30)—(35).

4.4 Lemma Ay vanishes on Z, which is at most n-dimensional.

Proof. If z = Vw = §*w € Z, then w € H) by definition. So Ay6*w =
0*Agqw = 0 by (27). This proves the first assertion. The second follows from
Bochner’s theorem, which says that any harmonic 1-form on a closed manifold
of non-negative Ricci curvature is parallel:

0= [ Baww) = [ (1Vel + Rew,)) du < = [ [Vl du
|
4.5 Lemma Ay <Oon E
Proof. Let e = VV f = 0*df € E be arbitrary. Since V Rc = 0, we have
Ageij = AVV;f +2Rpq; VPVIf = VAV, f,
and hence
(Age,e) = /ViAijViijdu = —/|AVf|2du <0.
Equality is possible only if 0 = AV f = Aydf, hence onlyife€ ENZ = {0}. m
4.6 Lemma A, < 0onC.
Proof. Let ¢ = §*0n € C be arbitrary, and write w = dn. Since by (27),
A6 on = §*Agon = =6 (dé + 6d) on = —0*ddw,
we have

(Age,¢) = — (0%0dw, 0" w) = — (ddw, 00*w) .
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But since Rc = 0, we get

((de)j =_V! (Viw]' — iji) = —Aw]- + Vjviwz'
= —ij - Vj&u = —ij - Vj ((5277) = —ij,

and similarly

. 1_. 1
((5(5*&))]- = —§V1 (Viwj + Vjw;) = —§ij.

Hence by (29), we have (Ayc,c) = —f|Adw|2 dp < 0, with equality only if
w € Hi, henceonlyif ce CNZ ={0}. m

4.7 Lemma A, vanishes on the 1-dimensional subspace G, and Ay, < 0 on

S\G.

Proof. The first statement is clear. Let s = [(Af +a)gi; — ViV,f] € S be
arbitrary. Since Rc = 0, we have V;V;V*f = V,;Af. So by (36), we get

(Ags,s) = / (AAS) gij — ViV, Af (AS +0a) gij — ViV, 1] dp

:(n—2)/AAfAf+(n—1)a/AAf+/(VVAf,VVf) dp

:—(n—l)/|VAf|2 dp < 0.

Equality is possible only if Af is constant, hence only if Af = 0, hence only if
f is constant. =

As noted above, since A, is elliptic and self adjoint, we may readily apply
Theorem 2.3 and thereby determine that center manifolds exist for the dynamics
of the Ricci flow near a Ricci-flat metric. Combining this with the results of
Lemmas 4.1-4.7, we are able to make the following observation:

4.8 Proposition Let (M™, go) be Ricci flat; and for fixed p € (0,1), let X
denote the closure of S, D 8§ with respect to the ||-||,, , Holder norm.

1.

T, Si = X admits the decomposition T, Sy = X° & X%, where XV is
finite dimensional. The eigenspace corresponding to the zero eigenvalue
of the linearization of the DeTurck flow at go contains the space Z & G
of dimension by + 1, where by = dim H' (M, R) is the first Betti number
of M, and possibly a subspace of N. If any positive eigenvalues of the
linearization exist, their eigenspaces are the closures of finite-dimensional
subspaces of N.

For each r € N, there is a C" center (unstable) manifold M{" existing in
a neighborhood O, of go in X. Each center (unstable) manifold MSY, is
tangential to X°* and is locally invariant for solutions of (25) as long as
they remain in O,.
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3. There are positive constants C' and w, and neighborhoods O.. of go in X
defined for all r € N, such that

1725 () = (75 ()|l < Ce™" [|7°g (0) — ¥ (75 (0))Ilx

for all solutions g (t) of (25) and all times t > 0 such that § (t) € O,.. (The
projections ° and " here are those defined in Theorem 2.3.)

We now consider the special case of a Ricci-flat metric on a K3 surface.

4.9 Definition A K3 surface is a closed connected smooth complex surface
with vanishing first Chern class and no global holomorphic 1-form.

A K3 surface is a 2-dimensional complex manifold, hence a 4-dimensional
real manifold. In fact, each K3 surface is diffeomorphic to a unique simply-
connected orientable manifold, namely the quartic hypersurface

3
Mt = [zO:zlzzQ:Z3]€CP3:Zz;:0 c CP3.

=0

Siu has proven [Si] that every K3 admits some Kéhler metric, and Yau’s proof
[Y] of the Calabi conjecture shows that each K&hler class of a K3 contains a
unique Ricci-flat K&hler metric. (For general background, the reader is referred
to [P].)

We are interested in fixing a Ricci-flat Kahler metric gg on the K3 surface
M?*, and considering the Ricci flow § (t) of metrics for which § (0) is ||-|,., , close
to go. Proposition 4.8 applies, but we shall be able to say more about the center
manifolds in this special case.

Our first observation is that the kernel of the Lichnerowicz Laplacian is well
understood for K3 geometries. Indeed, for any Riemannian manifold (M™", g),
let € (g) denote the space of infinitesimal Einstein deformations of g. (See 12.29
of [B].) The usual definition of ¢ (g) is equivalent by [BE] to the following
characterization, which is most convenient for our purposes:

4.10 Definition An element h € S, is an infinitesimal Einstein deformation
of g if and only if h € N and satisfies

Ahi]‘ + ZRZ'quhpq =0.

Tt is clear that ¢ (g) coincides with the kernel of Ay|N on any Ricci-flat manifold.
This space can be described exactly [B1]:

4.11 Theorem If (M*, go) is a Ricci-flat Kéhler metric on a K3 surface, then
¢ (go) is isomorphic to the tensor product of the 3-dimensional space of parallel
self-dual 2-forms and the 19-dimensional space of harmonic anti-self-dual 2-
forms.
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In general, the fact that - Re[g + Eh]|s=0 = 0 says nothing about Rc [g + &h]
for 0 < e € 1. It is thus a remarkable fact that the infinitesimal deformations

of a Kahler—Einstein metric on a K3 surface actually correspond to Ricci-flat
metrics [T1][T2]:

4.12 Theorem Let gy be a Kéihler—Einstein metric on a K3 surface M*. Then
there is a submanifold £ C Sy of Ricci-flat metrics near go with

Tgog =€ (gO) .

4.13 Remark The theorem implies in particular that &' = {\g: X >0, g € £}
is a 58-dimensional family of metrics that evolve only by diffeomorphisms under
the DeTurck flow (25).

With this understanding of the eigenspace corresponding to the zero eigen-
value of Ay, our remaining task is to elucidate the eigenspaces corresponding to
positive eigenvalues of Ay, should any exist. Proposition 4.8 tells us that any
such eigenspaces must be subspaces of N. We now show that for a Ricci-flat K3
geometry, no such spaces exist. To do this let us recall some standard facts about
4-dimensional geometries. On any oriented Riemannian manifold (M™, g), the
Hodge operator * : AP — A™ P is defined for 0 < p < n by a A (x8) = (o, 8) u,
where y is the volume form of g; it satisfies 2 = (—1)?" ) idy,. If n = 4, this
induces a natural decomposition A2 = A* @ A~ into the self-dual and anti-self-
dual eigenspaces of * corresponding to +1 and —1, respectively. If {e;} is an
orthonormal moving frame with dual coframe {6*} on an open set & C M, and
{n* =nf;0° A67} is an orthonormal basis of A?, say

771:%01/\027 ,',’2:\/L§91/\037 ,’,}3:%91/\94’
1 1 1

Y= 02N, P =262 n0Y, n®=-—F2=6°n0",

T VG LV

it is easily checked that {n' =7 n*> Fn® n® £n*} is an orthogonal basis of
A*. Tet A} denote the self-dual 2-forms of norm 1, and let S$ denote the
bundle of traceless symmetric (2,0)-tensors. Then it is well known [B2] that
there is a natural isomorphism o : AT ® A= — S9 given by 0 : 0 ® f = a X j3,
where

1
alf = Z (ter,@) @ (Le, B) (37)

k=1
and (¢1xn) (Y) = n(X,Y). The bases {n' £7°, n*> Fn°, n® £ n*} induce a block

decomposition of any linear map A2 — A2, in particular of the self-adjoint map
Rm : A2 — A? defined by

(Rm (77) ,n%) = Rijrens;njs (38)
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where R;ji, denotes a component of the Riemann curvature tensor with re-
spect to the coframe {91}. Now in any dimension, one also has the orthogonal
decomposition

Rm ) (gog)+ (Rc ® g) +W (39)

=2n(n—1 n—2

o
that defines the Weyl tensor W, where Rc is the trace-free part of the Ricci
tensor, and ® denotes the Kulkarni-Nomizu product of symmetric tensors. If
(M*, g) is Ricci flat, one may combine these points of view to identify Rm with
the block decomposition [ST] of the Weyl tensor,

+
Rm:W:<W W—)7 (40)
where each block W¥ is self adjoint and trace free.

4.14 Lemma Let (M*,g) be a Kihler-Einstein metric on a K3 surface. Let
a € Af and B € A=. Then

2Rmo (aXfp) =ak (W_ (/3))7

where (Rmo S),; = Ripq;SP? denotes the natural action of the curvature oper-
ator on a symmetric tensor.

Proof. It is well known that any Calabi—Yau metric on a K3 satisfies W+ = 0.
(See [B1] or 13.17 of [B].) Calculating with respect to the orthonormal basis
{ei}, we have

(amW™ (ﬂ))zj = iWijqpBpa = ik W jgpPoo-

Then using the symmetry of the product between self-dual and anti-self-dual
2-forms, we get

(Rmo (a® ,8))1]‘ = WipgjOkpPrq = Oéika_qu,qu-
Hence by the first Bianchi identity,
(Rmo(a® B)),; = —aip (Wk_qu + Wk_qu) Brq
= O"'PWJ;qk/qu - aiPWq;kj/qu
= (@RW~ (8)),; — (Rmo (a® B)),; -

]
We are now able to show that A, has no positive eigenvalues:

4.15 Corollary If (M*,g) is a Kéhler-Einstein metric on a K3 surface, then
A;<0on N and Ay <0 on N\e(g).
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Proof. Recall the general formula for the Hodge-de Rham Laplacian acting on
a 2-form:

Aanij = —[(dd + éd) n];; = Anyj + 2Ripgjnpg — Riknkj — Rjknik-
Let o € A} and 8 € A~ on a Kahler-Einstein K3. Then
(W7 (ﬂ))ij = Wz’;pqﬂqp =- (Riqu + Riqu) Bap = 2Ripq; Bpq-
Hence by Lemma 4.14, we obtain the useful identity

(AZ (04 X ﬂ))ij = (A (04 X ﬁ))ij +2 (Rm ° (04 X ﬁ))ij
= (Aa X /B)z'j + (Oé X Ad/B)ij + 2vp06k;7;vp,8kj.

Integrating by parts and recalling that |a| = 1, we get

(Ar(@®B), aRf) = - / Vol VAP du + / (Db B) dy < 0.

Since there are no parallel anti-self-dual forms, equality is possible only if « is
parallel and 8 is harmonic. =

Since by = 0 on a K3 surface, we have thus proved the following:

4.16 Theorem Let (M*, go) be a Kahler-Einstein metric on a K3 surface.
For fixed p € (0,1), let X denote the closure of S, D S with respect to the
||{l2, Hlder norm.

1. Ty, Sf =2 X admits the decomposition T, Sy = X* & X°¢. The space X° is
the closure of € (go) ® G, where € (go) is isomorphic to the tensor product
of a 3-dimensional space of parallel self-dual 2-forms and a 19-dimensional
space of harmonic anti-self-dual 2-forms. X¢ is thus 58-dimensional.

2. For each r € N, there is a C" center manifold Mj that exists in a

neighborhood O, of gy in X. Each center manifold is tangent to X¢ and
is locally invariant for solutions of (25) as long as they remain in O,.

3. There are positive constants C' and w, and neighborhoods O. of go in X
defined for all r € N, such that

1775 () = 9 (7g (1))l x < Ce™" ||7°G (0) = ¥ (77 (0)) |

for all solutions § (t) of (25) and all times t > 0 such that § (t) € O,..
4.17 Remark As mentioned in the introduction, Cao has shown [C] that any
Ké&hler metric on a K3 surface converges under the Ricci flow to a Ricci-flat

Kahler—Einstein metric. His result does not imply Theorem 4.16 however, be-
cause we consider the Ricci flow of all metrics near go, not just K&hler metrics.
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4.2 Stability at other Einstein metrics

If (M™, go) is a Riemannian manifold of constant nonzero sectional curvature,
it is not possible to choose u so that gg becomes a fixed point of the DeTurck
flow. So we modify our method, proceeding in two steps.

First we apply the DeTurck trick to the volume-normalized Ricci flow (2),
obtaining

B 2
59 = Aug + (]{Rdu) 9 g(0) = go- (41)

Clearly, Theorem 2.1 applies to this equation as well. Moreover, every metric go
of constant curvature becomes a fixed point of (41) if we again choose u = go.
By straightforward calculation, it follows from Proposition 3.2, Lemma 2.2,
and the formula for Rm on a manifold of constant sectional curvature that the
linearization of (41) at g takes the form

d 2R ([ Hdu
ahij = Ahij + 2Riquhpq - W ( fd/J, ) gz'j

B R 2R ( [Hdu
- Ahz] + m (ng] hz]) - F ( fd,ul ) gmv (42)

where H = g h;;.

Then we restrict our attention to the space S of metrics on M which have
the same volume element as gg. This involves no loss of generality, since by
[M], any metric in S5 can be transformed into an element of S5 by homothetic
rescaling and an action of D (M). Moreover, S5 has rather nice geometric prop-
erties: Ebin’s slice theorem applies to S5’ (see §8 of [E]), implying in particular
that S4 is ‘almost’ an infinite-dimensional symmetric space whose tangent space
89 consists exactly of those elements of Sy of trace zero. Moreover, the subset
D, (M) C D(M) of diffeomorphisms preserving du is a closed Lie subgroup
(Theorem 2.5.3 of [H1]).

Thus on TSy, we have H = 0, whence equation (42) reduces to

0 R
_i':Li'#Ai'_ii‘- 4
6th] oy oy n(n—l)hj (43)
Since when R > 0, we have
(Lh,h) = = VA% = ———— )22 < 0
’ L2 nn—1) L2

for any nonzero h € 89, we can apply the construction in §3.3 to S5 and thereby
obtain the following;:

4.18 Proposition Let (M™, go) be a metric of constant positive curvature.

Then there is a neighborhood O of go in S with the |||, , Holder norm such
that every g € O converges exponentially to go under the flow (41).
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4.19 Remark We include this result merely as an illustration of the method.
It does not provide an alternative proof of Hamilton’s convergence theorems for

n = 3 [H2] and n = 4 [H3], nor of Huisken’s result for n > 4 [Hu].

4.3 Ricci solitons

Suppose (M™, g (t)) is a steady Ricci gradient soliton with g (0) = go. Then
9 (z,t) = (6;90) (z)

for some family 6; of diffeomorphisms generated by vector fields —X (t) whose
dual 1-forms are closed. In particular,

Re = VV/,

where X (t) = Vf (¢) for some 1-parameter family of smooth functions f on M.
In dimension n > 3, the choice

u = e"gjfgo
makes go a fixed point of the DeTurck flow, because at t = 0 one has
(Pug)ij = _QViij = —2Rij.

The corresponding linearization at gq is given by

0 -3 )
ﬁh” = Ahi]‘ + V""’hijka — 2% (Vzh;” + V]hf) Vi f
1
- m (VzHVJf + VifVJH) + 2Riquhpq
n—3 & & 2 %

However, we have not yet extensively studied the spectrum of the operator that
results from this construction.
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