Linear integro-differential operator and Differentiability estimates: Difference between pages

From nonlocal pde
(Difference between pages)
Jump to navigation Jump to search
imported>Xavi
No edit summary
 
imported>Luis
 
Line 1: Line 1:
The linear integro-differential operators that we consider ''in this wiki'' are the generators of [[Levy processes]]. According to the Levy-Kintchine formula, they have the general form
Given a [[fully nonlinear integro-differential equation]] $Iu=0$, [[uniformly elliptic]] with respect to certain [[class of operators]], sometimes an interior $C^{1,\alpha}$ estimate holds for some $\alpha>0$ (typically very small). Assume $I0=0$. The $C^{1,\alpha}$ estimate is a result like the following.


\[ Lu(x) = \mathrm{tr} \, A(x) \cdot D^2 u + b(x) \cdot \nabla u + c(x) u + d(x) + \int_{\R^n} (u(x+y) - u(x) - y \cdot \nabla u(x) \chi_{B_1}(y)) \, \mathrm{d} \mu_x(y) \]
'''Theorem'''. Let $u \in L^\infty(R^n) \cap C(\overline B_1)$ solve the equation \[Iu = 0 \ \ \text{in } B_1.\]
where $A(x)$ is a nonnegative matrix for all $x$, and $\mu_x$ is a nonnegative measure for all $x$ satisfying
Then $u \in C^{1,\alpha}(B_{1/2})$ and the following estimate holds
\[ \int_{\R^n} \min(y^2 , 1) \mathrm{d} \mu_x(y) < +\infty. \]
\[ ||u||_{C^{1,\alpha}(B_{1/2})} \leq C ||u||_{L^\infty}. \]


The above definition is very general. Many theorems, and in particular regularity theorems, require extra assumptions in the kernels $K$. These assumptions restrict the study to certain sub-classes of linear operators. The simplest of all is the [[fractional Laplacian]]. We list below several extra assumptions that are usually made.
A theorem as above is known to hold under some assumptions on the [[nonlocal operator]] $I$. A list of valid assumptions is provided below.


== Absolutely continuous measure ==
Note that the result is stated for general [[fully nonlinear integro-differential equations]], but the most important cases to apply it are the [[Isaacs equation]] and [[Bellman equation]].


In most cases, the nonnegative measure $\mu$ is assumed to be absolutely continuous: $\mathrm{d} \mu_x(y) = K(x,y) \mathrm{d}y$.
== Idea of the proof ==
The idea to prove a $C^{1,\alpha}$ estimate is to apply [[Holder estimates]] to the derivatives of the solutions $u$. The directional derivatives $u_e$ satisfy the two inequalities
\[ M^+_{\mathcal L} u_e \geq 0 \text{ and } M^-_{\mathcal L} u_e \leq 0 \]
where $M^\pm_{\mathcal L}$ are the [[extremal operators]] with respect to the corresponding class of operators $\mathcal L$. If the [[Holder estimates]] apply to this class of operators, one would expect that $u_e \in C^\alpha$ for any vector $e$, and therefore $u \in C^{1,\alpha}$.


We keep this assumption in all the examples below.
There is a technical problem with the idea above. The Holder estimates indicate that $u_e$ is $C^\alpha$ in some $B_{1/2}$ provided that $u_e$ is already known to be bounded in $L^\infty(\R^n)$. In order to obtain the estimate starting from $u \in L^\infty(\R^n)$, one applies the Holder estimates successively to gain regularity at every step and then prove iteratively that $u \in C^\alpha \Rightarrow u \in C^{2\alpha} \Rightarrow u \in C^{3\alpha} \Rightarrow \dots \Rightarrow u \in C^{1,\alpha}$. The last step in the iteration illustrates the difficulty. Imagine that we have already proved that $u$ is Lipschitz in $B_{3/4}$, so we know that $u_e \in L^\infty(B_{3/4})$ for any vector $e$. This is not enough to apply the Holder estimates to $u_e$ since we would need $u_e \in L^\infty(\R^n)$.


== Purely integro-differential operator ==
The only known solution to this difficulty is to add an extra smoothness assumption to the family of kernels that allows to integrate by parts the tails in the integral representation of each linear operator $L u_e$ in the class $\mathcal L$ and write its tail as an integral in terms of $u$. It is an interesting [[open problems|open problem]] whether a better solution exist.


In this case we neglect the local part of the operator
==Examples for which the estimate holds ==
\[ Lu(x) = \int_{\R^n} (u(x+y) - u(x) - y \cdot \nabla u(x) \chi_{B_1}(y)) \, K(x,y) \mathrm d y. \]


== Symmetric kernels ==
=== Translation invariant, uniformly elliptic of order $s$, and some smoothness in the tails of the kernels ===
If the kernel is symmetric $K(x,y) = K(x,-y)$, then we can remove the gradient term from the integral and replace the difference by a second order quotient.


In the purely integro-differentiable case, it reads as
The first situation in which the interior $C^{1,\alpha}$ estimate was proved for a nonlocal equation was if $I$ is translation invariant and [[uniformly elliptic]] with respect to the class of kernels satisfying the following hypothesis for some $\rho_0$ small enough<ref name="CS"/>.
\[ Lu(x) = \frac 12 \int_{\R^n} (u(x+y)+u(x+y)-2u(x)) \, K(x,y) \mathrm d y. \]
\begin{align*}
\frac{(2-s)\lambda}{|y|^{n+s}} \leq K(y) &\leq \frac{(2-s)\Lambda}{|y|^{n+s}} && \text{(standard unif. ellipticity of order $s$)}\\
\int_{\R^n \setminus B_{\rho_0}} \frac{|K(y)-K(y-h)|}{|h|} \mathrm d y &\leq C \qquad \text{every time $|h|<\frac {\rho_0} 2$} && \text{(kernel tails in $W^{1,1}$)}
\end{align*}


The second order incremental quotient is sometimes abbreviated by $\delta u(x,y) := (u(x+y)+u(x+y)-2u(x))$.
=== Variant if the kernel tails are $C^1$ ===


== Translation invariant operators ==
A small variation of the previous result is to assume the class of kernels satisfying the slightly stronger assumptions. A scale invariant class for which interior $C^{1,\alpha}$ regularity holds is <ref name="CS2"/>
In this case, all coefficients are independent of $x$.
\begin{align*}
\[ Lu(x) = \mathrm{tr} \, A \cdot D^2 u + b \cdot \nabla u + c u + d + \int_{\R^n} (u(x+y) - u(x) - y \cdot \nabla u(x) \chi_{B_1}(y)) \, K(y) \mathrm{d}y. \]
\frac{(2-s)\lambda}{|y|^{n+s}} \leq K(y) &\leq \frac{(2-s)\Lambda}{|y|^{n+s}} && \text{(standard unif. ellipticity of order $s$)}\\
\nabla K(y) &\leq \frac{\Lambda}{|y|^{n+s+1}} && \text{appropriate decay of the kernel in $C^1$.}
\end{align*}


== The fractional Laplacian ==
Then, any solution of $Iu=0$ in $B_r$ satisfies the estimate
\[ [u]_{C^{1,\alpha}(B_{r/2})} \leq C \left(\frac 1 {r^{1+\alpha}} ||u||_{L^\infty(B_r)} + \frac 1 {r^{1+\alpha-s}} \int_{\R^n \setminus B_r} \frac{|u(y)|}{|y|^{n+s}} \mathrm d y \right). \]
Other $C^{1,\alpha}$ estimates are obtained from this one using [[perturbation methods]] <ref name="CS2"/>.


The [[fractional Laplacian]] is the simplest and most common purely integro-differential operator. It corresponds to a translation invariant operator for which $K(y)$ is radially symmetric and homogeneous.
=== A class of non-differentiable kernels ===
A scale invariant class for which interior $C^{1,\alpha}$ regularity holds and the kernels can be very irregular is given by the following hypothesis<ref name="CS2"/>
\begin{align*}
K(y) &= (2-s) \frac{a_1(y) + a_2(y)}{|y|^{n+s}} \\
\lambda &\leq a_1(y) \leq \Lambda \\
|a_2| &\leq \eta \\
|\nabla a_1(y)| &\leq \frac{C_1}{|y|} \qquad \text{in } \R^n \setminus \{0\}
\end{align*}
for $s>1$ and $\eta$ small enough (depending on $\lambda$, $\Lambda$, $C_1$ and dimension)


\[ -(-\Delta)^{s/2} u(x) = C_{n,s} \int_{\R^n} (u(x+y)+u(x+y)-2u(x)) \frac{1}{|y|^{n+s}} \mathrm d y. \]
=== Isaacs equation with variable coefficients but close to constant ===
If $s>1$, the following Isaacs equation also has interior $C^{1,\alpha}$ estimates <ref name="CS2"/>. The family of integro-differential operators has kernels which are the sum of a fixed term $a_0$ (the same for all kernels in the class) and a small term which can depend on $x$.
\[ \inf_\alpha \ \sup_\beta \int_{\R^n} (u(x+y)+u(x-y)-2u(x)) \frac{(2-s)(a_0(y) + a_{\alpha \beta}(x,y))}{|y|^{n+s}} \mathrm d y =0\]
such that we have for $\eta$ small enough and any $\alpha$, $\beta$,
\begin{align*}
|a_{\alpha \beta}(x,y)| &< \eta \qquad \text{ for every } \alpha, \beta \\
\lambda &\leq a_0(y) \leq \Lambda \\
|\nabla a_0(y)| &\leq C |y|^{-1}
\end{align*}
(note that this $C^{1,\alpha}$ estimate is nontrivial in the linear case as well)


== Stable operators ==
=== Isaacs equation with continuous coefficients ===
If $s>1$, the following Isaacs equation also has interior $C^{1,\alpha}$ estimates <ref name="CS2"/>.
\[ \inf_\alpha \ \sup_\beta \int_{\R^n} (u(x+y)+u(x-y)-2u(x)) \frac{(2-s)a_{\alpha \beta}(x,y)}{|y|^{n+s}} \mathrm d y = 0\]
such that for every $\alpha$, $\beta$ we have
\begin{align*}
\lambda \leq a_{\alpha \beta}(x,y) &\leq \Lambda \\
\nabla_y a_{\alpha \beta}(x,y) &\leq C_1/((2-s)|y|)\\
|a_{\alpha \beta}(x_1,y) - a_{\alpha \beta}(x_2,y)| &\leq c(|x_1-x_2|) && \text{for some uniform modulus of continuity $c$}.
\end{align*}


These are the operators whose kernel is homogeneous in $y$
\[ K(x,y)=\frac{a(x,y/|y|)}{|y|^{n+s}}.\]
They are the generators of stable Lévy processes.
== Uniformly elliptic of order $s$ ==
This corresponds to the assumption that the kernel is comparable to the one of the fractional Laplacian of the same order.
\[ \frac {(2-s)\lambda}{|y|^{n+s}} \leq K(x,y) \leq \frac {(2-s)\Lambda}{|y|^{n+s}}. \]
The normalizing factor $(2-s)$ is a normalizing factor which is only important when $s$ approaches two.
An operator of variable order can be either one for which $s$ depends on $x$, or one for which there are two values $s_1<s_2$, one for the left hand side and another for the right hand side.
== Smoothness class $k$ of order $s$ ==
This class (sometimes denoted as $\mathcal L_k^s$) corresponds to kernels that are uniformly elliptic of order $s$ and, moreover, their derivatives are also bounded
\[ |\partial_y^r K(x,y)| \leq \frac {\Lambda}{|y|^{n+s+r}} \ \ \text{for all } r\leq k. \]
== Order strictly below one ==
If a non symmetric kernel $K$ satisfies the extra local integrability assumption
\[ \int_{\R^n} \min(|y|,1) K(x,y) \mathrm d y < +\infty, \]
then the extra gradient term is not necessary in order to define the operator.
\[ Lu(x) = \int_{\R^n} (u(x+y) - u(x)) \, K(x,y) \mathrm d y. \]
The modification in the integro-differential part of the operator becomes an extra drift term.
A uniformly elliptic operator of order $s<1$ satisfies this condition.
== Order strictly above one ==
If a non symmetric kernel $K$ satisfies the extra integrability assumption on its tail.
\[ \int_{\R^n} \min(|y|^2,|y|) K(x,y) \mathrm d y < +\infty, \]
then the gradient term in the integral can be taken global instead of being cut off in the unit ball.
\[ Lu(x) = \int_{\R^n} (u(x+y) - u(x) - y \cdot \nabla u(x)) \, K(x,y) \mathrm d y. \]
The modification in the integro-differential part of the operator becomes an extra drift term.
A uniformly elliptic operator of order $s>1$ satisfies this condition.
== Indexed by a matrix ==
In some cases, it is interesting to study a family of kernels $K$ that are indexed by a matrix. For example, given the matrix $A$, one can consider the kernel of order $s$:
\[ K_A(y) =  \frac{(2-s) \langle y , Ay \rangle}{|y|^{n+2+s}}. \]
This family of kernels has the outstanding property that the corresponding linear operator $L$ coincides with $Lu(x) = a_{ij} \partial_{ij}\left[(-\Delta)^{(s-2)/2} u \right] (x)$ for some coefficients $a_{ij}$.
== Second order elliptic operators as limits of purely integro-differential ones ==
Given any bounded, even, positive function $a: \mathbb{R}^n\to \mathbb{R}$, the family of operators
\[L_\sigma u(x) = (2-\sigma) \int_{\mathbb{R}^n} (u(x+y)+u(x-y)-2u(x))\frac{a(y)}{|y|^{n+\sigma}}dy,\;\; \sigma \in (0,2), \]
define in the limit $\sigma \to 2^-$ a second order linear elliptic operator (possibly degenerate). This can be checked for any fixed $C^2$ function $u$ by a straightforward computation using the second order Taylor expansion. A class of kernels that is big enough to recover all translation invariant elliptic operators of the form  $Lu(x) = Tr ( A \cdot D^2u(x) )$ is given by the kernels
\[ K_A(y) = (2-\sigma) \frac{1}{|Ay|^{n+\sigma}},\]
where $A$ is an invertible symmetric matrix.
== Characterization via global maximum principle ==
A bounded linear operator
\[ L: C^2_0(\mathbb{R}^n) \to C(\mathbb{R}^n) \]
is said to satisfy the global maximum principle if given any $u \in C^2_0(\mathbb{R}^n)$ with a global maximum at some point $x_0$ we have
\[ (Lu)(x_0) \leq 0 \]
It turns out this property imposes strong restrictions on the operator $L$, and we have the following theorem due to Courrège <ref name="C65"/> <ref name="C64"/>: if $L$ satisfies the global maximum principle then it has the form
\[ Lu(x) = \mathrm{tr} \, A(x) \cdot D^2 u + b(x) \cdot \nabla u + c(x) u + \int_{\R^n} (u(x+y) - u(x) - y \cdot \nabla u(x) \chi_{B_1}(y)) \, \mathrm{d} \mu_x(y) \]
where again $A(x)$ is a nonnegative matrix for all $x$, $c(x)\leq 0$ and $\mu_x$ is a nonnegative measure for all $x$ satisfying
\[ \int_{\R^n} \min(y^2 , 1) \mathrm{d} \mu_x(y) < +\infty. \]
and $A(x),c(x)$ and $b(x)$ are bounded.
== See also ==
* [[Fractional Laplacian]]
* [[Levy processes]]
* [[Dirichlet form]]




== References ==
== References ==
{{reflist|refs=
{{reflist|refs=
<ref name="C64">{{Citation | last1=Courrège | first1=Philippe | title=Générateur infinitésimal d'un semi-groupe de convolution sur $R^n$, et formule de Lévy-Khinchine | year=1964 | journal=Bulletin des Sciences Mathématiques. 2e Série | issn=0007-4497 | volume=88 | pages=3–30}}</ref>
<ref name="CS">{{Citation | last1=Caffarelli | first1=Luis | last2=Silvestre | first2=Luis | title=Regularity theory for fully nonlinear integro-differential equations | url=http://dx.doi.org/10.1002/cpa.20274 | doi=10.1002/cpa.20274 | year=2009 | journal=[[Communications on Pure and Applied Mathematics]] | issn=0010-3640 | volume=62 | issue=5 | pages=597–638}}</ref>
<ref name="C65">{{Citation | last1=Courrège | first1=P. | title=Sur la forme intégro-différentielle des opéateurs de  $C_k^\infty(\mathbb{R}^n)$  dans $C(\mathbb{R}^n)$ satisfaisant au principe du maximum | journal=Sém. Théorie du potentiel (1965/66) Exposé | volume=2}}</ref>
<ref name="CS2">{{Citation | last1=Caffarelli | first1=Luis | last2=Silvestre | first2=Luis | title=Regularity results for nonlocal equations by approximation | publisher=[[Springer-Verlag]] | location=Berlin, New York | year=2009 | journal=Archive for Rational Mechanics and Analysis | issn=0003-9527 | pages=1–30}}</ref>
}}
}}

Revision as of 12:03, 7 February 2012

Given a fully nonlinear integro-differential equation $Iu=0$, uniformly elliptic with respect to certain class of operators, sometimes an interior $C^{1,\alpha}$ estimate holds for some $\alpha>0$ (typically very small). Assume $I0=0$. The $C^{1,\alpha}$ estimate is a result like the following.

Theorem. Let $u \in L^\infty(R^n) \cap C(\overline B_1)$ solve the equation \[Iu = 0 \ \ \text{in } B_1.\] Then $u \in C^{1,\alpha}(B_{1/2})$ and the following estimate holds \[ ||u||_{C^{1,\alpha}(B_{1/2})} \leq C ||u||_{L^\infty}. \]

A theorem as above is known to hold under some assumptions on the nonlocal operator $I$. A list of valid assumptions is provided below.

Note that the result is stated for general fully nonlinear integro-differential equations, but the most important cases to apply it are the Isaacs equation and Bellman equation.

Idea of the proof

The idea to prove a $C^{1,\alpha}$ estimate is to apply Holder estimates to the derivatives of the solutions $u$. The directional derivatives $u_e$ satisfy the two inequalities \[ M^+_{\mathcal L} u_e \geq 0 \text{ and } M^-_{\mathcal L} u_e \leq 0 \] where $M^\pm_{\mathcal L}$ are the extremal operators with respect to the corresponding class of operators $\mathcal L$. If the Holder estimates apply to this class of operators, one would expect that $u_e \in C^\alpha$ for any vector $e$, and therefore $u \in C^{1,\alpha}$.

There is a technical problem with the idea above. The Holder estimates indicate that $u_e$ is $C^\alpha$ in some $B_{1/2}$ provided that $u_e$ is already known to be bounded in $L^\infty(\R^n)$. In order to obtain the estimate starting from $u \in L^\infty(\R^n)$, one applies the Holder estimates successively to gain regularity at every step and then prove iteratively that $u \in C^\alpha \Rightarrow u \in C^{2\alpha} \Rightarrow u \in C^{3\alpha} \Rightarrow \dots \Rightarrow u \in C^{1,\alpha}$. The last step in the iteration illustrates the difficulty. Imagine that we have already proved that $u$ is Lipschitz in $B_{3/4}$, so we know that $u_e \in L^\infty(B_{3/4})$ for any vector $e$. This is not enough to apply the Holder estimates to $u_e$ since we would need $u_e \in L^\infty(\R^n)$.

The only known solution to this difficulty is to add an extra smoothness assumption to the family of kernels that allows to integrate by parts the tails in the integral representation of each linear operator $L u_e$ in the class $\mathcal L$ and write its tail as an integral in terms of $u$. It is an interesting open problem whether a better solution exist.

Examples for which the estimate holds

Translation invariant, uniformly elliptic of order $s$, and some smoothness in the tails of the kernels

The first situation in which the interior $C^{1,\alpha}$ estimate was proved for a nonlocal equation was if $I$ is translation invariant and uniformly elliptic with respect to the class of kernels satisfying the following hypothesis for some $\rho_0$ small enough[1]. \begin{align*} \frac{(2-s)\lambda}{|y|^{n+s}} \leq K(y) &\leq \frac{(2-s)\Lambda}{|y|^{n+s}} && \text{(standard unif. ellipticity of order $s$)}\\ \int_{\R^n \setminus B_{\rho_0}} \frac{|K(y)-K(y-h)|}{|h|} \mathrm d y &\leq C \qquad \text{every time $|h|<\frac {\rho_0} 2$} && \text{(kernel tails in $W^{1,1}$)} \end{align*}

Variant if the kernel tails are $C^1$

A small variation of the previous result is to assume the class of kernels satisfying the slightly stronger assumptions. A scale invariant class for which interior $C^{1,\alpha}$ regularity holds is [2] \begin{align*} \frac{(2-s)\lambda}{|y|^{n+s}} \leq K(y) &\leq \frac{(2-s)\Lambda}{|y|^{n+s}} && \text{(standard unif. ellipticity of order $s$)}\\ \nabla K(y) &\leq \frac{\Lambda}{|y|^{n+s+1}} && \text{appropriate decay of the kernel in $C^1$.} \end{align*}

Then, any solution of $Iu=0$ in $B_r$ satisfies the estimate \[ [u]_{C^{1,\alpha}(B_{r/2})} \leq C \left(\frac 1 {r^{1+\alpha}} ||u||_{L^\infty(B_r)} + \frac 1 {r^{1+\alpha-s}} \int_{\R^n \setminus B_r} \frac{|u(y)|}{|y|^{n+s}} \mathrm d y \right). \] Other $C^{1,\alpha}$ estimates are obtained from this one using perturbation methods [2].

A class of non-differentiable kernels

A scale invariant class for which interior $C^{1,\alpha}$ regularity holds and the kernels can be very irregular is given by the following hypothesis[2] \begin{align*} K(y) &= (2-s) \frac{a_1(y) + a_2(y)}{|y|^{n+s}} \\ \lambda &\leq a_1(y) \leq \Lambda \\ |a_2| &\leq \eta \\ |\nabla a_1(y)| &\leq \frac{C_1}{|y|} \qquad \text{in } \R^n \setminus \{0\} \end{align*} for $s>1$ and $\eta$ small enough (depending on $\lambda$, $\Lambda$, $C_1$ and dimension)

Isaacs equation with variable coefficients but close to constant

If $s>1$, the following Isaacs equation also has interior $C^{1,\alpha}$ estimates [2]. The family of integro-differential operators has kernels which are the sum of a fixed term $a_0$ (the same for all kernels in the class) and a small term which can depend on $x$. \[ \inf_\alpha \ \sup_\beta \int_{\R^n} (u(x+y)+u(x-y)-2u(x)) \frac{(2-s)(a_0(y) + a_{\alpha \beta}(x,y))}{|y|^{n+s}} \mathrm d y =0\] such that we have for $\eta$ small enough and any $\alpha$, $\beta$, \begin{align*} |a_{\alpha \beta}(x,y)| &< \eta \qquad \text{ for every } \alpha, \beta \\ \lambda &\leq a_0(y) \leq \Lambda \\ |\nabla a_0(y)| &\leq C |y|^{-1} \end{align*} (note that this $C^{1,\alpha}$ estimate is nontrivial in the linear case as well)

Isaacs equation with continuous coefficients

If $s>1$, the following Isaacs equation also has interior $C^{1,\alpha}$ estimates [2]. \[ \inf_\alpha \ \sup_\beta \int_{\R^n} (u(x+y)+u(x-y)-2u(x)) \frac{(2-s)a_{\alpha \beta}(x,y)}{|y|^{n+s}} \mathrm d y = 0\] such that for every $\alpha$, $\beta$ we have \begin{align*} \lambda \leq a_{\alpha \beta}(x,y) &\leq \Lambda \\ \nabla_y a_{\alpha \beta}(x,y) &\leq C_1/((2-s)|y|)\\ |a_{\alpha \beta}(x_1,y) - a_{\alpha \beta}(x_2,y)| &\leq c(|x_1-x_2|) && \text{for some uniform modulus of continuity $c$}. \end{align*}


References

  1. Caffarelli, Luis; Silvestre, Luis (2009), "Regularity theory for fully nonlinear integro-differential equations", Communications on Pure and Applied Mathematics 62 (5): 597–638, doi:10.1002/cpa.20274, ISSN 0010-3640, http://dx.doi.org/10.1002/cpa.20274 
  2. 2.0 2.1 2.2 2.3 2.4 Caffarelli, Luis; Silvestre, Luis (2009), "Regularity results for nonlocal equations by approximation", Archive for Rational Mechanics and Analysis (Berlin, New York: Springer-Verlag): 1–30, ISSN 0003-9527