Button to scroll to the top of the page.

Francesco Maggi

Department of Mathematics

Joe B. and Louise Cook Professorship in Mathematics (Holder)

Calculus of Variations and Geometric Measure Theory


Phone: 512-471-5139

Office Location
PMA 10.124

Postal Address
AUSTIN, TX 78712

Full professor UT Austin, USA, 2016/present

Member Institute for Advanced Study, Princeton, USA, Spring 2019

Research scientist ICTP Trieste, Italy, 2016/2017 

Associate professor UT Austin, USA, 2012/2015

Professore associato (Associate prof.), U. Firenze, Italy, 2011/2012

(Assistant prof.), U. Firenze, Italy, 2005/2011

Wissenschaftlichen Assistenten C1 
(Assistant prof.) U. Duisburg-Essen, Germany, 2005

Postdoctoral associate, MPI-MIS Leipzig, Germany, 2004

Ph.D. in Mathematics
, U. Firenze, Italy, 2004

Visiting graduate student 
MPI-MIS Leipzig, Germany, Fall 2002 and Fall 2003

Visiting graduate student Carnegie Mellon University, Pittsburgh, USA, Spring 2003

M.S. in Mathematics
, U. Firenze, Italy, 2000

55 Maggi, Francesco; Scardicchio, Antonello; Stuvard, Salvatore. Soap films with gravity and almost-minimal surfaces, Preprint arXiv:1807.05200

54 Delgadino, Matias; Maggi, Francesco. Alexandrov's theorem revisited, Preprint arXiv:1711.07690

53 Cavalletti, Fabio; Maggi, Francesco; Mondino, Andrea. Quantitative isoperimetry à la Lévy-Gromov. Accepted on Comm. Pure Appl. Math.Preprint arXiv:1707.04326

52 Delgadino, Matias; Maggi, Francesco; Mihaila, Cornelia; Neumayer, Robin, Bubbling with L2 almost constant mean curvature and an Alexandrov-type theorem for crystals. Accepted on Archive for Rational Mechanics and Analysis. Preprint arXiv:1705.10117

51 Cavalletti, Fabio; Maggi, Francesco; Mondino, Andrea. Rigidity for critical points in the Lévy-Gromov inequality. Accepted on Mathematische Zeitschrift.  Preprint arXiv:1612.04119

50 Figalli, Alessio; Maggi, Francesco; Mooney, Connor. The sharp quantitative Euclidean concentration inequality. Accepted on Cambridge Journal of Mathematics.Preprint arXiv:1601.04100v2

49 Dipierro, Serena; Maggi, Francesco; Valdinoci, Enrico. Asymptotic expansions of the contact angle in nonlocal capillarity problems. Accepted on Journal of Nonlinear Science.PreprintarXiv:1610.00075

48 Maggi, Francesco; Valdinoci, Enrico. Capillarity problems with nonlocal surface tension energies. Accepted on Comm. PDE.Preprint arXiv:1606.08610

47 Ciraolo, Giulio; Figalli, Alessio; Maggi, Francesco. A quantitative analysis of metrics in R^n with almost constant positive scalar curvature, with applications to fast diffusion flows. Accepted on Int. Math. Res. Not. IMRNPreprint arXiv:1602.01916

46 Cicalese, Marco; Leonardi, Gian Paolo; Maggi, Francesco. Sharp stability inequalities for planar double bubbles. Accepted on Interfaces Free Bound.Preprint arXiv:1211.3698

45 Ciraolo, Giulio; Figalli, Alessio; Maggi, Francesco; Novaga, Matteo. Rigidity and sharp stability estimates for hypersurfaces with constant and almost-constant nonlocal mean curvature. Accepted on Journal für die reine und angewandte Mathematik(Crelle's Journal).Preprint arXiv:1503.00653

44 Carlen, Eric; Maggi, Francesco. Stability for the Brunn-Minkowski and Riesz rearrangement inequalities, with applications to Gaussian concentration and finite range non-local isoperimetry. (2017) Canad. J. Math. 69, 1036-1063. Preprint arXiv:1507.03454.

43 Maggi, Francesco; Neumayer, Robin. A bridge between Sobolev and Escobar inequalities and beyond (2017) J. Funct. Anal. 273(6),2070-2106. Preprint arXiv:1609.02346

42 Krummel, Brian; Maggi, Francesco. Isoperimetry with upper mean curvature bounds and sharp stability estimates (2017) Calc. Var. PDE. 56(2), Paper no. 53, 43 pp.Preprint arXiv:1606.00490

41 Ciraolo, Giulio; Maggi, Francesco. On the shape of compact hypersurfaces with almost constant mean curvature (2017) Comm. Pure Appl. Math. 70(4), 665-716.Preprint arXiv:1503.06674

40 Colombo, Maria; Maggi, Francesco. Existence and almost everywhere regularity of isoperimetric clusters for fractional perimeters (2017) Nonlinear Anal. 153, 243-274.Preprint arXiv:1605.05641

39 Leonardi, Gian Paolo; Maggi, Francesco (2017)  Improved convergence theorems for bubble clusters. II. The three-dimensional case. Indiana Univ. Math. J. 66(2), 559-608. Preprint arXiv:1505.06709.

38 De Lellis, Camillo; Ghiraldin, Francesco; Maggi, Francesco (2017) A direct approach to Plateau's problem. J. Eur. Math. Soc. (JEMS) 19(8), 2219-2240.Preprint arXiv:1408.4047

37 Cagnetti, Filippo; Colombo, Maria; De Philippis, Guido; Maggi Francesco (2017) Essential connectedness and the rigidity problem for Gaussian symmetrization. J. Eur. Math. Soc. (JEMS) 19(2) 395-439.Preprint arXiv:1304.4527

36 De Philippis, Guido; Maggi, Francesco (2017). Dimensional estimates for singular sets in geometric variational problems with free boundaries.J. Reine Angew. Math.(Crelle's Journal), 725, 217-234.Preprint arXiv:1407.4834

35 Maggi, Francesco; Mihaila, Cornelia. On the shape of capillarity droplets in a container (2016) Calc. Var. PDE. 55(5), Paper no. 122, 42 pp. Preprint arXiv:1509.03324

34 Cicalese, Marco; Leonardi, Gian Paolo; Maggi, Francesco. (2016) Improved convergence theorems for bubble clusters. I. The planar case. Indiana Univ. Math. J. 65(6), 1979-2050.Preprint arXiv:1409.6652.

33 Caroccia, Marco; Maggi, Francesco. (2016)A sharp quantitative version of Hales' isoperimetric honeycomb theorem, J. Math. Pures Appl. (9) 106(5), 935-956. Preprint arXiv:1410.6128.

32 Figalli, Alessio; Fusco, Nicola; Maggi, Francesco; Millot, Vincent; Morini, Massimiliano (2015). Isoperimetry and stability properties of balls with respect to nonlocal energies. Comm. Math. Phys. 336(1), 441-507. Preprint arXiv:1403.0516

31 De Philippis, Guido; Maggi, Francesco (2015). Regularity of free boundaries in anisotropic capillarity problems and the validity of Young's law. Arch. Ration. Mech. Anal. 216(2), 473-568. Preprint arXiv:1402.0549

30 Cagnetti, Filippo; Colombo, Maria; De Philippis, Guido; Maggi Francesco (2014). Rigidity of equality cases in Steiner's perimeter inequality. Anal. PDE, 7(7), 1535-1593. Preprint arXiv:1309.1639

29 De Philippis, Guido; Maggi, Francesco (2014). Sharp stability inequalities for the Plateau problem. J. Differential Geom. 96(3), 399-456.

28 Maggi, Francesco; Ponsiglione, Marcello; Pratelli, Aldo (2014) Quantitative stability in the isodiametric inequality via the isoperimetric inequality. Trans. AMS 366(3), 1141-1160.

27 Figalli, Alessio; Maggi, Francesco; Pratelli, Aldo (2014). A geometric approach to correlation inequalities in the plane. Ann. Inst. Henri Poincaré Probab. Stat. 50(1), 1-14.

26 Figalli, Alessio; Maggi, Francesco; Pratelli, Aldo (2013). Sharp stability theorems for the anisotropic Sobolev and log-Sobolev inequalities on functions of bounded variation, Adv. Math. 242, 80-101. 

25Figalli, Alessio; Maggi, Francesco (2013) On the isoperimetric problem for radial log-convex densities, Calc. Var. Partial Differential Equations 48(3-4), 447-489. 

24 Figalli, Alessio; Maggi, Francesco; (2011) On the shape of liquid drops and crystals in the small mass regime. Arch. Ration. Mech. Anal. 201(1), 143-207.

23 Fusco, Nicola; Maggi, Francesco; Pratelli, Aldo (2011). On the isoperimetric problem with respect to a mixed Euclidean-Gaussian density. J. Funct. Anal. 260(12), 3678-3717. 

22 Cianchi, Andrea; Fusco, Nicola; Maggi, Francesco; Pratelli, Aldo (2011) On the isoperimetric deficit in Gauss space. Amer. J. Math. 133(1), 131-186. 

21 Fonseca, Irene; Leoni, Giovanni; Maggi, Francesco; Morini, Massimiliano (2010) Exact reconstruction of color images by a total variation model, Ann. Inst. H. Poincaré Anal. Non Linéaire 27,1291-1331.

20 Figalli, Alessio; Maggi, Francesco; Pratelli, Aldo (2010). A mass transportation approach to quantitative isoperimetric inequalities, Invent. Math. 182, 167-211. 

19 Figalli, Alessio; Maggi, Francesco; Pratelli, Aldo (2009). A refined Brunn-Minkowski inequality for convex sets, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26, 2511-2519. 

18 Figalli, Alessio; Maggi, Francesco; Pratelli, Aldo (2009). A note on Cheeger sets, Proc. AMS 137(6), 2057–2062. 

17 Cianchi, Andrea; Fusco, Nicola; Maggi, Francesco; Pratelli, Aldo (2009), The sharp Sobolev inequality in quantitative form, J. Eur. Math. Soc. (5),1105–1139. 

16 Fusco, Nicola; Maggi, Francesco; Pratelli, Aldo (2009) Stability estimates for certain Faber-Krahn, isocapacitary and Cheeger inequalities. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 51–71. 

15 Maggi, Francesco (2008). Some methods for studying stability in isoperimetric type problems, Bull. AMS 45(3), 367-408. 

14 Fusco, Nicola; Maggi, Francesco; Pratelli, Aldo (2008). The sharp quantitative isoperimetric inequality, Ann. of Math. (2) 168(3),941-980. 

13 Maggi, Francesco; Villani, Cédric (2008). Balls have the worst best Sobolev inequalities. Part two: variants and extensions, Calc. Var. PDE 31(1), 47-74. 

12 Conti, Sergio; Maggi, Francesco, (2008). Confining thin elastic sheets and folding paper.Arch. Ration. Mech. Anal. 187(1), 1-48. 

11 Fusco, Nicola; Maggi, Francesco; Pratelli, Aldo (2007) The sharp quantitative Sobolev inequality for functions of bounded variation J. Funct. Anal. 244(1)315-341. 

10 Conti, Sergio; Maggi, Francesco; Müller, Stefan (2006) Rigorous derivation of Föppl’s theory for clamped elastic membranes leads to relaxation, SIAM J. Math. Anal. 38(2) 657-680. 

Fusco, Nicola; Gori, Michele; Maggi, Francesco (2006). A remark on Serrin’s theorem. NoDEA 13(4),425-433. 

Conti, Sergio; Faraco, Daniel; Maggi, Francesco; Müller, Stefan (2005). Rank-one convex functions on 2 × 2 symmetric matrices and laminates on rank-three lines. Calc. Var. PDE 24(4), 479-493. 

Conti, Sergio; Faraco, Daniel; Maggi, Francesco (2005) A new approach to counterexamples to L1estimates: Korn’s inequality, geometric rigidity and regularity for gradients of separately convex functions, Arch. Ration. Mech. Anal. 175(2), 287-300. 

Gori, Michele; Maggi, Francesco (2005). The common root of the geometric conditions in Serrin’s lower semicontinuity theorem.Ann. Mat. Pura e Applicata,184(1), 95-114. 

Maggi, Francesco; Villani, Cédric (2005). Balls have the worst best Sobolev inequalities. J. Geom. Anal. 15(1), 83-121. 

Maggi, Francesco; Morini, Massimiliano (2004). A Γ-convergence result for variational integrators of quadratic lagrangians.ESAIM: COCV 10(4), 656-665.

Maggi, Francesco (2003) On the relaxation on BV of certain non-coercive integral functionals, J. Convex Anal. 10(2), 477-489. 

Gori, Michele; Maggi, Francesco (2003) On the lower semicontinuity of supremal functionals, ESAIM: COCV 9, 135-143.

Gori, Michele; Maggi, Francesco; Marcellini, Paolo (2003). On some sharp conditions for lower semicontinuity in L1. Diff. Int. Equations 16(1),51-76.

Books and lecture notes:

Maggi, Francesco (2012). Sets of finite perimeter and geometric variational problems: an introduction to Geometric Measure Theory,Cambridge Studies in Advances Mathematics 135, Cambridge University Press, 2012.

Maggi, Francesco (2008).Symmetrization, optimal transport and quantitative isoperimetric inequalities. This is a chapter in: Optimal transportation, Geometry and Functional inequalities (Edited by Luigi Ambrosio). Centro di Ricerca Matematica Ennio De Giorgi (CRM) Series, 11. Edizioni della Normale, Pisa, 2010.